Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Divers ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739230

RESUMO

In the present work, we successfully synthesized Se-alkyl selenopyridines 1 and 3, selenopheno[2,3-b]pyridine 2, and bis-selenopyridine 4 derivatives using an eco-friendly method by utilizing NaHSe instead of toxic hydrogen selenide. The effect of the temperature on the reaction was screening at various temperatures. The regiospecific reaction of selenopyridine 1 with bromine afforded an unexpected product 4,6-diamino-5-bromo-2-[(cyanomethyl)selenyl]-pyridine-3-carbonitrile (5), which was cyclized to selenopheno[2,3-b]pyridine (7) by refluxing in the presence of TEA. While its treatment with thiophenol and/or p-chlorothiophenol gave 8a, b. On the other hand, its reaction with aminothiophenol afforded 2-(benzo[d]-thiazol-2-yl)-5-bromoselenopheno[2,3-b]pyridine-3,4,6-triamine (9). Also, N-(2-cyano-4-methyl-5H-1-seleno-3,5,8-triazaacenaphthylen-7-yl)acetamide (11) and a novel series of selenoazo dyes 12a-d were synthesized by treatment of selenopheno[2,3-b]pyridine 2 with acetic anhydride and/or diazonium chlorides of aromatic amines, respectively. Then, we ascertained the potential activity of synthesized compounds against highly metastatic prostate cancer cells (PC-3) and osteosarcoma cells (MG-63) and found that 12a, 12b, 12c, and 12d were more cytotoxic than doxorubicin in both tested cell lines, showing nearly the same anticancer activity with IC50 values ranging from 2.59 ± 0.02 µM to 3.93 ± 0.23 µM. Mechanistically, the most potent compounds 12a and 12b proved to be potent EGFR inhibitors with IC50 values of 0.301 and 0.123 µM, respectively, compared to lapatinib as a positive reference (IC50 = 0.049 µM). Moreover, the docking results are in good agreement with the anticancer activity as well as the EGFR inhibitory activity, suggesting these two compounds as promising EGFR anticancer candidates.

2.
Bioorg Chem ; 129: 106171, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36166898

RESUMO

Uncontrolled inflammation predisposes to pleiotropic effects leading to cancer development thanks to promoting all stages of tumorigenesis. Therefore, cancer-associated inflammation has been delegated as the seventh hallmark of cancer. Thus, raging the war against both inflammation and cancer via the innovation of bioactive agents with dual anti-inflammatory and anticancer activities is a necessity. Herein, a novel series of pyrazole-chalcone analogs of Lonazolac (7a-g and 8a-g) have been synthesized and investigated for their in vitro anticancer activity against four cancer cell lines using the MTT assay method. Among all, hybrid 8g was the most potent against three cancer cell lines, HeLa, HCT-116, and RPMI-822 with IC50 values of 2.41, 2.41, and 3.34 µM, respectively. In contrast, hybrid 8g showed moderate inhibitory activity against MCF-7 with IC50 28.93 µM and with a selectivity profile against MCF-10A (non-cancer cells). Mechanistically, hybrid 8g was the most potent inhibitor against tubulin polymerization (IC50 = 4.77 µM), suggesting tubulin as a molecular target and explaining the observed cytotoxicity of hybrid 8g. This was mirrored by the detected potent pre-G1 apoptosis induction and G2/M cell cycle arrest. Moreover, hybrid8gexhibited selectivity against COX-2 (IC50 = 5.13 µM) more than COX-1 (IC50 = 33.46 µM), indicating that 8g may have lower cardiovascular side effects, but is still not potent as celecoxib (COX-2 IC50 = 0.204 µM, COX-1 = 35.8 µM). Notably, hybrid 8g showed promising inhibitory activity towards 5-LOX (IC50 = 5.88 µM). Finally, the anti-inflammatory activity of hybrid8 g was confirmed by high iNOS and PGE2 inhibitory activities in LPS-stimulated RAW cells with IC50 values of4.93 µM and 10.98 µM, respectively, that accompanied by showingthe most potent inhibition of NO release (70.61 % inhibition rate). Molecular docking studies of hybrid 8g confirmed good correlations with the executed biological results. Furthermore, hybrid 8g had good drug-likeness and suitable physicochemical properties. Taken together, the combined results suggested hybrid8gas a promising orally administered candidate in the journey of repurposing NSAIDs for cancer chemopreventionand treatment.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Humanos , Simulação de Acoplamento Molecular , Moduladores de Tubulina/farmacologia , Chalcona/farmacologia , Chalconas/farmacologia , Tubulina (Proteína)/metabolismo , Ciclo-Oxigenase 2/metabolismo , Relação Estrutura-Atividade , Pirazóis/farmacologia , Pirazóis/química , Anti-Inflamatórios/farmacologia , Inflamação , Antineoplásicos/química , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Linhagem Celular Tumoral
3.
Bioorg Chem ; 119: 105564, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959179

RESUMO

Herein, we report design and synthesis of twenty-one dual PIM-1/HDAC inhibitors utilizing 3-cyanopyridines as a novel cap moiety linked with aliphatic /aromatic linker bearing carboxylic acid 3a-g, hydroxamic acid 4a-g or 2-aminoanilide moieties 5a-g as zinc-binding group. Most of the target hybrids revealed promising growth inhibition according to one dose NCI protocol against 60 cancer cell lines. Meanwhile, hydroxamic acids 4b, 4d and 4e displayed strong and broad-spectrum activity against nine tumor subpanels tested (GI50 0.176-8.87 µM); 4d displayed strong antiproliferative activity with GI50 ≤ 3 µM against different cancer cell lines (GI50 range from 0.325 to 2.9 µM). Furthermore, 4a, 4d-4g and 5f manifested a high inhibitory activity against HDACs 1 and 6 isozymes; 4g, displayed potent HDAC 1 and 6 inhibitory activity (45.01 ± 2.1 and 19.78 ± 1.1 nM) more than the reference SAHA (51.54 ± 2.4 and 21.38 ± 1.2 nM, respectively), while 4f was more potent (30.09 ± 1.4 nM) than SAHA against HDAC 1 and less potent (30.29 ± 1.7 nM) than SAHA against HDAC 6. Hybrids 4b, 4d, 4e and 4f exhibited potent PIM-1 inhibitory activity; 4d showed comparable activity to quercetin (IC50 of 343.87 ± 16.6 and 353.76 ± 17.1 nM, respectively); it exhibited pre G1 apoptosis and arrest cell cycle at G2/M phase. Moreover, it revealed good binding into pocket of HDACs 1,6 and PIM-1 kinase enzymes with good correlation with biological results. Moreover, 4b, 4d and 4e had reasonable drug-likeness properties according to Lipinski's rule. However, multitarget inhibitor of PIM-1/HDAC is a promising strategy in anticancer drug discovery; the most potent hybrids require further in vivo and clinical investigations.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Piridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
4.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163939

RESUMO

Since the synthesis of prontosil the first prodrug shares their chemical moiety, sulfonamides exhibit diverse modes of actions to serve as antimicrobials, diuretics, antidiabetics, and other clinical applications. This inspiring chemical nucleus has promoted several research groups to investigate the synthesis of new members exploring new clinical applications. In this study, a novel series of 5(4H)-oxazolone-based-sulfonamides (OBS) 9a-k were synthesized, and their antibacterial and antifungal activities were evaluated against a wide range of Gram-positive and -negative bacteria and fungi. Most of the tested compounds exhibited promising antibacterial activity against both Gram-positive and -negative bacteria particularly OBS 9b and 9f. Meanwhile, compound 9h showed the most potent antifungal activity. Moreover, the OBS 9a, 9b, and 9f that inhibited the bacterial growth at the lowest concentrations were subjected to further evaluation for their anti-virulence activities against Pseudomonas aeruginosa and Staphylococcus aureus. Interestingly, the three tested compounds reduced the biofilm formation and diminished the production of virulence factors in both P. aeruginosa and S. aureus. Bacteria use a signaling system, quorum sensing (QS), to regulate their virulence. In this context, in silico study has been conducted to assess the ability of OBS to compete with the QS receptors. The tested OBS showed marked ability to bind and hinder QS receptors, indicating that anti-virulence activities of OBS could be due to blocking QS, the system that controls the bacterial virulence. Furthermore, anticancer activity has been further performed for such derivatives. The OBS compounds showed variable anti-tumor activities, specifically 9a, 9b, 9f and 9k, against different cancer lines. Conclusively, the OBS compounds can serve as antimicrobials, anti-virulence and anti-tumor agents.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Oxazolona/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sulfonamidas/química , Virulência/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Percepção de Quorum , Fatores de Virulência/metabolismo
5.
Bioorg Chem ; 111: 104885, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838559

RESUMO

New antibacterial drugs are urgently needed to tackle the rapid rise in multi-drug resistant bacteria. DNA gyrase is a validated target for the development of new antibacterial drugs. Thus, in the present investigation, a novel series of 1,2,4-oxadiazole-chalcone/oxime (6a-f) and (7a-f) were synthesized and characterized by IR, NMR (1H and 13C) and elemental analyses. The title compounds were evaluated for their in-vitro antimicrobial activity by the modified agar diffusion method as well as their E. coli DNA gyrase inhibitory activity. The minimum inhibitory concentration (MIC) and the structure activity relationships (SARs) were evaluated. Among all, compounds 6a, 6c-e, 7b and 7e were the most potent and proved to possess broad spectrum activity against the tested Gram-positive and Gram-negative organisms. Additionally, compounds 6a (against S. aureus), 6c (against B. subtilis and E. hirae), 6e (against E. hirae), 6f, 7a and 7c (against E. coli) and 7d (against B. subtilis), with MIC value of 3.12 µM were two-fold more potent than the standard ciprofloxacin (MIC = 6.25 µM). Mechanistically, compounds 6c, 7c, 7e and 7b had good inhibitory activity against E. coli gyrase with IC50 values of 17.05, 13.4, 16.9, and 19.6 µM, respectively, in comparison with novobiocin (IC50 = 12.3 µM) and ciprofloxacin (IC50 = 10.5 µM). The molecular docking results at DNA gyrase active site revealed that the most potent compounds 6c and 7c have binding mode and docking scores comparable to that of ciprofloxacin and novobiocin suggesting their antibacterial activity via inhibition of DNA gyrase. Finally, the predicted parameters of Lipinski's rule of five and ADMET analysis showed that 6c and 7c had good drug-likeness and acceptable physicochemical properties. Therefore, the hybridization of the chalcone and oxadiazole moieties could be promising lead as antibacterial candidate which merit further future structural optimizations.


Assuntos
Antibacterianos/farmacologia , DNA Girase/metabolismo , Desenho de Fármacos , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Relação Dose-Resposta a Droga , Enterococcus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
6.
Bioorg Chem ; 112: 104920, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33910078

RESUMO

DNA gyrase and topoisomerase IV (topo IV) inhibitors are among the most interesting antibacterial drug classes without antibacterial pipeline representative. Twenty-four new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids were developed and tested against DNA gyrase and topoisomerase IV from Escherichia coli and Staphylococcus aureus. The most potent compounds 4c, 4e, 4f, and 5e displayed an IC50 of 34, 26, 32, and 90 nM against E. coli DNA gyrase, respectively (novobiocin, IC50 = 170 nM). The activities of 4c, 4e, 4f, and 5e on DNA gyrase from S. aureus were weaker than those on E. coli gyrase. Compound 4e showed IC50 values (0.47 µM and 0.92 µM) against E. coli topo IV and S. aureus topo IV, respectively in comparison to novobiocin (IC50 = 11, 27 µM, respectively). Antibacterial activity against Gram-positive and Gram-negative bacterial strains has been studied. Some compounds have demonstrated superior antibacterial activity to ciprofloxacin against some of the bacterial strain studied. The most active compounds in this study showed no cytotoxic effect with cell viability>86%. Finally, a molecular docking analysis was performed to investigate the binding mode and interactions of the most active compounds to the active site of DNA gyrase and topoisomerase IV (topo IV) enzymes.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Oxidiazóis/farmacologia , Quinolinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Triazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxidiazóis/química , Quinolinas/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Triazóis/química
7.
J Enzyme Inhib Med Chem ; 36(1): 1067-1078, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34027787

RESUMO

Two series of chalcone/aryl carboximidamide hybrids 4a-f and 6a-f were synthesised and evaluated for their inhibitory activity against iNOS and PGE2. The most potent derivatives were further checked for their in vivo anti-inflammatory activity utilising carrageenan-induced rat paw oedema model. Compounds 4c, 4d, 6c and 6d were proved to be the most effective inhibitors of PGE2, LPS-induced NO production, iNOS activity. Moreover, 4c, 4d, 6c and 6d showed significant oedema inhibition ranging from 62.21% to 78.51%, compared to indomethacin (56.27 ± 2.14%) and celecoxib (12.32%). Additionally, 4c, 6a and 6e displayed good COX2 inhibitory activity while 4c, 6a and 6c exhibited the highest 5LOX inhibitory activity. Compounds 4c, 4d, 6c and 6d fit nicely into the pocket of iNOS protein (PDB ID: 1r35) via the important amino acid residues. Prediction of physicochemical parameters exhibited that 4c, 4d, 6c and 6d had acceptable physicochemical parameters and drug-likeness. The results indicated that chalcone/aryl carboximidamides 4c, 4d, 6c and 6d, in particular 4d and 6d, could be used as promising lead candidates as potent anti-inflammatory agents.


Assuntos
Amidas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Chalcona/farmacologia , Dinoprostona/antagonistas & inibidores , Desenho de Fármacos , Edema/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Carragenina , Células Cultivadas , Chalcona/síntese química , Chalcona/química , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Relação Estrutura-Atividade
8.
Molecules ; 26(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205768

RESUMO

Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Proteases 3C de Coronavírus/química , Poríferos/química , Poríferos/metabolismo , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/efeitos dos fármacos , Amino Açúcares/química , Amino Açúcares/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacocinética , Biologia Computacional , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Piridinas/química , Piridinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19
9.
Bioorg Chem ; 105: 104439, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161252

RESUMO

The development of NSAIDs/iNOS inhibitor hybrids is a new strategy for the treatment of inflammatory diseases by suppression of the overproduction of PGE2 and NO. A novel series of aryl carboximidamides 4a-g and their cyclized 3-aryl-1,2,4-oxadiazoles 5a-g counterparts derived from indomethacin 1 were synthesized. Most of the target compounds displayed lower LPS-induced NO production IC50 in RAW 264.7 cells and potent in vitro iNOS and PGE2 inhibitory activity than indomethacin. Moreover, in carrageenan-induced rat paw oedema method, most of them exhibited higher in vivo anti-inflammatory activity than the reference drug indomethacin. Notably, 4 hrs after carrageenan injection, compound 4a proved to be the most potent anti-inflammatory agent in this study, with almost two- and eight-fold more active than the reference drugs indomethacin (1) and celecoxib, respectively. Compound 4a proved to be inhibitor to LPS-induced NO production, iNOS activity and PGE2 with IC50 of 10.70 µM, 2.31 µM, and 29 nM; respectively. Compounds 4a and 5b possessed the lowest ulcerogenic liabilities (35% and 38%, respectively) compared to 1. Histopathological analysis revealed that compounds 4a and 5b demonstrated reduced degeneration and healing of ulcers. Molecular docking studies into the catalytic binding pocket of the iNOS protein receptor (PDB ID: 1r35) showed good correlation with the obtained biological results. Parameters of Lipinski's rule of five and ADMET analysis were calculated where compound 4a had reasonable drug-likeness with acceptable physicochemical properties so it could be used as promising orally absorbed anti-inflammatory therapy and entitled to be used as future template for further investigations.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Dinoprostona/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Indometacina/química , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Oxidiazóis/síntese química , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Carragenina/química , Celecoxib/metabolismo , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Humanos , Lipopolissacarídeos/química , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Óxido Nítrico/metabolismo , Oxidiazóis/administração & dosagem , Oxidiazóis/farmacocinética , Oximas/química , Células RAW 264.7 , Ratos
10.
Bioorg Chem ; 105: 104352, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33080494

RESUMO

PDE5 targeting represents a new and promising strategy for apoptosis induction and inhibition of tumor cell growth due to its over-expression in diverse types of human carcinomas. Accordingly, we report the synthesis of series of pyrazolo[3,4-d]pyrimidin-4-one carrying quinoline moiety (11a-r) with potential dual PDE5 inhibition and apoptotic induction for cancer treatment. These hybrids were structurally elucidated and characterized with variant spectroscopic techniques as 1H NMR, 13C NMR and elemental analysis. The assessment of their anticancer activities has been declared. All the rationalized compounds 11a-r have been selected for their cytotoxic activity screening by NCI against 60 cell lines. Compounds 11a, 11b, 11j and 11k were the most active hybrids. Among all, compound 11j was further selected for five dose tesing and it displayed outstanding activity with strong antitumor activity against the nine tumor subpanels tested with selectivity ratios ranging from 0.019 to 8.3 at the GI50 level. Further, the most active targets 11a, b, j and k were screened for their PDE5 inhibitory activity, compound 11j (with IC50 1.57 nM) exhibited the most potent PDE5 inhibitory activity. Moreover, compound 11j is also showed moderate EGFR inhibition with IC50 of 5.827 ± 0.46 µM, but significantly inhibited the Wnt/ß-catenin pathway with IC501286.96 ± 12.37 ng/mL. In addition, compound 11j induced the intrinsic apoptotic mitochondrial pathway in HepG2 cells as evidenced by the lower expression levels of the anti-apoptotic Bcl-2 protein, and the higher expression of the pro-apoptotic protein Bax, p53, cytochrome c and the up-regulated active caspase-9 and caspase-3 levels. All results confirmed by western blotting assay. Compound 11j exhibit pre G1 apoptosis and cell cycle arrest at G2/M phase. In conclusion, hybridization of quinoline moiety with the privileged pyrazolo[3,4-d]pyrimidinon-4-one structure resulted in highly potent anticancer agent, 11j, which deserves more study, in particular, in vivo and clinical investiagtions, and it is expected that these results would be applied for more drug discovery process.


Assuntos
Antineoplásicos/síntese química , Inibidores da Fosfodiesterase 5/síntese química , Quinolinas/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases Efetoras/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citocromos c/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolinas/farmacologia , Proteína X Associada a bcl-2/metabolismo
11.
Bioorg Chem ; 99: 103797, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32247939

RESUMO

Twenty-five valproic acid conjugates have been designed and synthesized. All target compounds were explored for their in vitro anti-proliferative activities using the MTT-based assay against four human cancer cell lines includingliver (HePG2), colon (HCT116), breast (MCF7) and cervical (HeLa) carcinoma cell lines. Out of six valproic acid-amino acid conjugates 2a-f. Only cysteine containing conjugate 2f showed the significant activity (IC50 9.10 µM against HePG2 and 6.81 µM against HCT116). However conjugate 2j showed broad-spectrum antitumor activity against all cell lines tested. In addition, conjugates 4j and 4k which contains phenyl hydrazide and hydroxamic acid group, respectively, also showed broad spectrum activity. Furthermore, six compounds were screened for HDAC 1-9 isozymes inhibitory activities. Compounds 2j, 4j and 4k manifested a higher inhibitory activity more than valproic acid but less than SAHA. In addition, the in vivo antitumor screening of 2j, 4j and 4k was done and the results have shown that 2j, 4j and 4k, particularly 4j, showed a significant decrease in tumor size and presented a considerable decrease in viable EAC count. Docking study of selectedcompound 4j revealed that it can bind nicely to the binding pocket of HDAC 1, 2, 3, 4 and HDAC 8. The results suggest that compounds 2j, 4j and 4k, particularly 4j, may be promising lead candidates for the development of novel targeted anti-tumor drug potentially via inhibiting HDACs.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácido Valproico/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Ácido Valproico/síntese química , Ácido Valproico/química
12.
Molecules ; 25(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650556

RESUMO

Two sets of diphenyl ether derivatives incorporating five-membered 1,3,4-oxadiazoles, and their open-chain aryl hydrazone analogs were synthesized in good yields. Most of the synthesized compounds showed promising in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Three diphenyl ether derivatives, namely hydrazide 3, oxadiazole 4 and naphthylarylidene 8g exhibited pronounced activity with minimum inhibitory concentrations (MICs) of 0.61, 0.86 and 0.99 µg/mL, respectively compared to triclosan (10 µg/mL) and isoniazid (INH) (0.2 µg/mL). Compounds 3, 4, and 8g showed the InhA reductase enzyme inhibition with higher IC50 values (3.28-4.23 µM) in comparison to triclosan (1.10 µM). Correlation between calculated physicochemical parameters and biological activity has been discussed which justifies a strong correlation with respect to the inhibition of InhA reductase enzyme. Molecular modeling and drug-likeness studies showed good agreement with the obtained biological evaluation. The structural and experimental information concerning these three InhA inhibitors will likely contribute to the lead optimization of new antibiotics for M. tuberculosis.


Assuntos
Antituberculosos , Proteínas de Bactérias , Inibidores Enzimáticos , Mycobacterium tuberculosis/enzimologia , Oxirredutases , Triclosan/análogos & derivados , Animais , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Chlorocebus aethiops , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Células Vero
13.
Bioorg Chem ; 89: 102997, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31136902

RESUMO

One of the helpful ways to improve the effectiveness of anticancer agents and weaken drug resistance is to use hybrid molecules. therefore, the current study intended to introduce 20 novel xanthine/chalcone hybrids 9-28 of promising anticancer activity. Compounds 10, 11, 13, 14, 16, 20 and 23 exhibited potent inhibition of cancer cells growth with IC50 ranging from 1.0 ±â€¯0.1 to 3.5 ±â€¯0.4 µM compared to doxorubicin with IC50 ranging from 0.90 ±â€¯0.62 to 1.41 ±â€¯0.58 µM and that compounds 11 and 16 were the best. To verify the mechanism of their anticancer activity, compounds 10, 11, 13, 14, 16, 20 and 23 were evaluated for their EGFR inhibitory effect. The study results revealed that compound 11 showed IC50 = 0.3 µM on the target enzyme which is more potent than staurosporine reference drug (IC50 = 0.4 µM). Accordingly, the apoptotic effect of the most potent compounds 11 was extensively investigated and showed a marked increase in Bax level up to 29 folds, and down-regulation in Bcl2 to 0.28 fold, in comparison to the control. Furthermore, the effect of compound 11 on Caspases 3 and 8 was evaluated and was found to increase their levels by 8 and 14 folds, respectively. Also, the effect of compound 11 on the cell cycle and its cytotoxic effect were examined. Moreover, a molecular docking study was adopted to confirm mechanism of action.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Chalcona/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Xantina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Chalcona/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Células Hep G2 , Humanos , Células MCF-7 , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Xantina/síntese química , Xantina/química
14.
Bioorg Chem ; 91: 103127, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31374527

RESUMO

A series of novel 5,6,7,8-Tetrahydro[1]benzothieno[2,3-d]pyrimidin-4(3H)-one derivatives bearing a hydroxamic acid, 2-aminoanilide and hydrazide moieties as zinc-binding group (ZBG) were designed, synthesized and evaluated for the HDAC inhibition activity and antiproliferative activity. Most of the tested compounds displayed strong to moderate HDAC inhibitory activity. Some of these compounds showed potent anti-proliferative activity against human HepG2, MCF-7 and HCT-116 cell lines. In particular, compounds IVa, IVb, IXa and IXb exhibited significant anti-proliferative activity against the three cell lines tested compared to SAHA as a reference. Compound IVb is equipotent inhibitor for HDAC1 and HDAC2 as SAHA. It is evident that the presence of free hydroxamic acid group is essential for Zn binding affinity with maximal activity with a linker of aliphatic 6 carbons. Docking study results revealed that compound IVb could occupy the HDAC2 binding site and had the potential to exhibit antitumor activity through HDAC inhibition, which merits further investigation.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Pirimidinonas/farmacologia , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quelantes/síntese química , Quelantes/metabolismo , Quelantes/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/química , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Pirimidinonas/síntese química , Pirimidinonas/metabolismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/metabolismo , Zinco/metabolismo
15.
Bioorg Chem ; 85: 577-584, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30878890

RESUMO

A series of novel naproxen analogues containing 3-aryl-1,2,4-oxadiazoles moiety (4b-g) and their reaction intermediates aryl carboximidamides moiety (3b-g) was synthesized and evaluated in vitro as dual COXs/15-LOX inhibitors. Compounds 3b-g exhibited superior inhibitory activity than celecoxib as COX-2 inhibitors. Compounds 3b-d and 3g were the most potent COX-2 inhibitors with IC50 range of 6.4 - 8.13 nM and higher selectivity indexes (3b, SI = 26.19; 3c, SI = 13.73; 3d, SI = 29.27; 3g, SI = 18.00) comparing to celecoxib (IC50 = 42.60 nM, SI = 8.05). Regarding 15-LOX inhibitory activity, compounds belonging to aryl carboximidamide backbone 3b-e and 3g were the most potent with IC50 range of 1.77-4.91 nM comparing to meclofenamate sodium (IC50 = 5.64 µM). Data revealed that The levels of NO released by aryl carboximidamides 3b-g were more higher than 3-aryl-1,2,4-oxadiazole derivatives 4b-g, which correlated well with their COX-2 inhibitory activities.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Lipoxigenase/farmacologia , Naproxeno/análogos & derivados , Naproxeno/farmacologia , Oxidiazóis/farmacologia , Animais , Bovinos , Celecoxib/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Desenho de Fármacos , Humanos , Inibidores de Lipoxigenase/síntese química , Linfócitos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Naproxeno/síntese química , Doadores de Óxido Nítrico/síntese química , Doadores de Óxido Nítrico/farmacologia , Oxidiazóis/síntese química , Glycine max/enzimologia
16.
Bioorg Chem ; 80: 151-163, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29920422

RESUMO

A novel quinolinyl pyrrolone and quinolinyl pyridazinone derivatives has been synthesized and characterized using different spectroscopic and elemental analysis techniques. Most of the target compounds displayed promising antiproliferative activity; In general, the pyrrolone derivatives 4a-f exhibited higher antiproliferative activity than their corresponding pyridazinone. The pyrrolone 4f showed outstanding antiproliferative activity with moderate selectivity against CNS and renal cancer with selectivity ratio of 3.49 and 3.56, respectively. Compound 4e and 5d experienced tubulin polymerization inhibitory activity comparable to that of vincristine while 4c, 4e and 4d showed good BRAF kinase inhibition compared to Erlotinib. Docking of compound 4e into colchicine binding site and biological assay results revealed that these compounds act mainly through tubulin polymerization inhibitory mechanism and can exhibit pre G1 apoptosis and cell cycle arrest at G2/M phase.


Assuntos
Piridazinas/química , Pirróis/química , Quinolinas/química , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Piridazinas/metabolismo , Piridazinas/farmacologia , Pirróis/metabolismo , Pirróis/farmacologia , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia
17.
Bioorg Chem ; 72: 32-41, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28346873

RESUMO

A group of novel chalcone derivatives comprising hydroxamic acid or 2-aminobenzamide group as zinc binding groups (ZBG) were synthesized. The structure of the prepared compounds was fully characterized by IR, NMR and elemental microanalyses. Most of the tested compounds displayed strong to moderate HDAC inhibitory activity. Some of these compounds showed potent anti-proliferative activity against human HepG2, MCF-7 and HCT-116 cell lines. In particular, compounds 4a and 4b exhibited significant anti-proliferative activity against the three cell lines compared to SAHA as reference drug and displayed promising profile as anti-tumor candidates. The results indicated that these chalcone derivatives could serve as a promising lead compounds for further optimization as antitumor agents.


Assuntos
Chalcona/farmacologia , Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Simulação de Acoplamento Molecular , Chalcona/síntese química , Chalcona/química , Relação Dose-Resposta a Droga , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
18.
RSC Adv ; 12(39): 25204-25216, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199335

RESUMO

Novel quinoxaline derivatives (2a-d, 3, 4a, 4b and 5-15) have been synthesized via the reaction of 4-methyl-3-oxo-3,4-dihydroquinoxaline-2-carbohydrazide (1) with different aldehydes, ketones, diketones, ketoesters, as well as hydrazine, phenyl isothiocyanate, carbon disulphide. The synthesized products have been screened for their in vitro anticancer and COX inhibitory activities. Most of the synthesized compounds exhibited good anticancer and COX-2 inhibitory activities. MTT assay revealed that compounds 11 and 13 were the most potent and exhibited very strong anticancer activity against the three cancer cell lines with IC50 values ranging from 0.81 µM to 2.91 µM. Compounds 4a and 5 come next and displayed strong anticancer activity against the three cancer cell lines with IC50 values ranging from 3.21 µM to 4.54 µM. Mechanistically, compounds 4a and 13 were the most active and potently inhibited EGFR with IC50 = 0.3 and 0.4 µM, respectively. Compounds 11 and 5 come next with IC50 = 0.6 and 0.9 µM, respectively. Moreover, compounds 11 and 13 were the most potent as COX-2 inhibitors and displayed higher potency against COX-2 (IC50 = 0.62 and 0.46 µM, respectively) more than COX-1 (IC50 = 37.96 and 30.41 µM, respectively) with selectivity indexes (SI) of 61.23 and 66.11, respectively. Compounds 4a and 5 comes next with IC50 = 1.17 and 0.83 µM and SI of 24.61 and 48.58, respectively. Molecular docking studies into the catalytic binding pocket of both protein receptors, EGFR and COX-2, showed good correlation with the obtained biological results. Parameters of Lipinski's rule of five and Veber's standard were calculated and revealed that compounds 4a, 5, 11 and 13 had a reasonable drug-likeness with acceptable physicochemical properties. Therefore, based on the obtained biological results accompanied with the docking study and physicochemical parameters, it could be concluded that compounds 4a, 5, 11 and 13 could be used as promising orally absorbed dual anti-inflammatory agents via inhibition of COX-2 enzyme and anticancer candidates via inhibition of EGFR enzyme and could be used as a future template for further investigations.

19.
Life Sci ; 311(Pt B): 121187, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403646

RESUMO

AIMS: Ulcerative colitis (UC) is characterized by the up-regulation of pro-inflammatory mediators, apoptotic signals, and oxidative stress that can lead to an increased risk of colorectal cancer. The present study aims to investigate the possible role of myristicin in modulating endoplasmic reticulum stress (ERS) and risk-associated conditions in acetic acid (AA)-induced UC. MATERIALS AND METHODS: Adult male rats were treated with 150 mg/kg body weight of myristicin or mesalazine orally either as pre/post treatment or post-treatment only. The gene expression of glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), and nuclear factor kappa B (NF-κB), percentage of DNA fragmentation, and serum levels of some oxidative and inflammatory markers were measured. KEY FINDINGS: The results indicated the potential upregulation of ERS, pro-apoptotic, lipid peroxidation, and pro-inflammatory cascades by induction of UC in rats. However, myristicin could effectively reverse the deteriorated effects of ulceration in colonic mucosa. It was mediated through downregulation of the ERS markers GRP78 and CHOP genes expression, reduction of NF-κB mRNA expression, DNA fragmentation, reduced lipid peroxidation, myeloperoxidase (MPO) activity and pro-inflammatory markers (Tumor necrosis factor-α (TNF-α), Interleukin-1ß (IL-1ß) and cyclo­oxygenase (COX-2) activity). Accompanied by elevated levels of IL-10, colonic Nuclear erythroid factor (Nrf-2) and Heme oxygenase (HO-1) activity as well as blood antioxidant enzymes activity. Results of docking might confirm the biological results of our study. SIGNIFICANCE: Myristicin could effectively modulate important stress, and inflammatory effectors and protect mucosal DNA from oxidative damage which can serve as a promising candidate for the treatment of ulcerative colitis.


Assuntos
Derivados de Alilbenzenos , Colite Ulcerativa , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Estresse do Retículo Endoplasmático , NF-kappa B/metabolismo
20.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34832959

RESUMO

Recently, combining histone deacetylase (HDAC) inhibitors with chemotherapeutic drugs or agents, in particular epidermal growth factor receptor (EGFR) inhibitors, is considered to be one of the most encouraging strategy to enhance the efficacy of the antineoplastic agents and decrease or avoid drug resistance. Therefore, in this work, based on introducing 3,4,5-trimethoxy phenyl group as a part of the CAP moiety, in addition to incorporating 4-6 aliphatic carbons linker and using COOH or hydroxamic acid as ZBG, 12 novel EGFR/HDAC hybrid inhibitors 2a-c, 3a-c, 4a-c and 5a-c were designed, constructed, and evaluated for their anticancer activities against 4 cancer cell lines (HepG2, MCF-7, HCT116 and A549). Among all, hybrids with hydroxamic acid 4a-c and 5a, exhibited the highest inhibition against all cancer cell lines with IC50 ranging from 0.536 to 4.892 µM compared to Vorinostat (SAHA) with IC50 ranging from 2.43 to 3.63 µM and Gefitinib with IC50 ranging from 1.439 to 3.366 µM. Mechanistically, the most potent hybrids 4a-c and 5a were further tested for their EGFR and HDACs inhibitory activities. The findings disclosed that hybrid 4b displayed IC50 = 0.063 µM on the target EGFR enzyme which is slightly less potent than the standard Staurosporine (IC50 = 0.044 µM). Furthermore, hybrid 4b showed less HDAC inhibitory activity IC50 against HDAC1 (0.148), 2 (0.168), 4 (5.852), 6 (0.06) and 8 (2.257) than SAHA. In addition, the investigation of apoptotic action of the most potent hybrid 4b showed a significant increase in Bax level up to 3.75-folds, with down-regulation in Bcl2 to 0.42-fold, compared to the control. Furthermore, hybrid 4b displayed an increase in the levels of Caspases 3 and 8 by 5.1 and 3.15 folds, respectively. Additionally, the cell cycle analysis of hybrid 4b revealed that it showed programmed cell death and cell cycle arrest at G1/S phase. Moreover, all these outcomes together with the molecular docking study recommended the rationalized target hybrids 4a-c and 5a, particularly 4b, may be considered to be promising lead candidates for discovery of novel anticancer agents via dual inhibition of both EGFR/HDAC enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA