Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39204791

RESUMO

The rapid development of Internet of Things (IoT) technologies and the potential benefits of employing the vast datasets generated by IoT devices, including wearable sensors and camera systems, has ushered in a new era of opportunities for enhancing smart rehabilitation in various healthcare systems. Maintaining patient privacy is paramount in healthcare while providing smart insights and recommendations. This study proposed the adoption of federated learning to develop a scalable AI model for post-stroke assessment while protecting patients' privacy. This research compares the centralized (PSA-MNMF) model performance with the proposed scalable federated PSA-FL-CDM model for sensor- and camera-based datasets. The computational time indicates that the federated PSA-FL-CDM model significantly reduces the execution time and attains comparable performance while preserving the patient's privacy. Impact Statement-This research introduces groundbreaking contributions to stroke assessment by successfully implementing federated learning for the first time in this domain and applying consensus models in each node. It enables collaborative model training among multiple nodes or clients while ensuring the privacy of raw data. The study explores eight different clustering methods independently on each node, revolutionizing data organization based on similarities in stroke assessment. Additionally, the research applies the centralized PSA-MNMF consensus clustering technique to each client, resulting in more accurate and robust clustering solutions. By utilizing the FedAvg federated learning algorithm strategy, locally trained models are combined to create a global model that captures the collective knowledge of all participants. Comparative performance measurements and computational time analyses are conducted, facilitating a fair evaluation between centralized and federated learning models in stroke assessment. Moreover, the research extends beyond a single type of database by conducting experiments on two distinct datasets, wearable and camera-based, broadening the understanding of the proposed methods across different data modalities. These contributions develop stroke assessment methodologies, enabling efficient collaboration and accurate consensus clustering models and maintaining data privacy.


Assuntos
Acidente Vascular Cerebral , Humanos , Algoritmos , Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Consenso , Análise por Conglomerados , Aprendizado de Máquina
2.
Sensors (Basel) ; 23(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37420682

RESUMO

Stroke survivors often suffer from movement impairments that significantly affect their daily activities. The advancements in sensor technology and IoT have provided opportunities to automate the assessment and rehabilitation process for stroke survivors. This paper aims to provide a smart post-stroke severity assessment using AI-driven models. With the absence of labelled data and expert assessment, there is a research gap in providing virtual assessment, especially for unlabeled data. Inspired by the advances in consensus learning, in this paper, we propose a consensus clustering algorithm, PSA-NMF, that combines various clusterings into one united clustering, i.e., cluster consensus, to produce more stable and robust results compared to individual clustering. This paper is the first to investigate severity level using unsupervised learning and trunk displacement features in the frequency domain for post-stroke smart assessment. Two different methods of data collection from the U-limb datasets-the camera-based method (Vicon) and wearable sensor-based technology (Xsens)-were used. The trunk displacement method labelled each cluster based on the compensatory movements that stroke survivors employed for their daily activities. The proposed method uses the position and acceleration data in the frequency domain. Experimental results have demonstrated that the proposed clustering method that uses the post-stroke assessment approach increased the evaluation metrics such as accuracy and F-score. These findings can lead to a more effective and automated stroke rehabilitation process that is suitable for clinical settings, thus improving the quality of life for stroke survivors.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Humanos , Consenso , Qualidade de Vida , Acidente Vascular Cerebral/diagnóstico , Movimento , Reabilitação do Acidente Vascular Cerebral/métodos
3.
Biomed Eng Online ; 16(1): 113, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934956

RESUMO

BACKGROUND: At present, infrared (IR) imaging is used both as a non-invasive and a non-ionizing technology. Using an IR camera, it is possible to measure body surface temperature in order to detect tumors and malignant cells. Tumors have a high amount of vasculature and an enhanced metabolism rate, which may result in an increase in body surface temperature by several degrees above its normal level. METHODS: Using thermograms, it is possible to assess various tumor parameters, such as depth, intensity, and radius. Also, by solving for Penne's bioheat equation, it is possible to develop the analytical method to solve for inverse heat conduction problem (IHCP). RESULTS: In the present study, these parameters were optimized using artificial neural networks in order to localize the heat source in the medium (i.e. female breast) more accurately. CONCLUSION: Eventually, a new formula was derived from Penne's bioheat equation to estimate the depth and radius of the embedded heat source. Moreover, by analyzing the data, errors of the parameters could be estimated.


Assuntos
Temperatura Alta , Raios Infravermelhos , Termografia/métodos , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação
4.
Comput Biol Med ; 76: 80-93, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27416548

RESUMO

Implementation of non-invasive, non-contact, radiation-free thermal diagnostic tools requires an accurate correlation between surface temperature and interior physiology derived from living bio-heat phenomena. Such associations in the chest, forearm, and natural and deformed breasts have been investigated using finite element analysis (FEA), where the geometry and heterogeneity of an organ are accounted for by creating anatomically-accurate FEA models. The quantitative links are involved in the proposed evolutionary methodology for forecasting unknown Physio-thermo-biological parameters, including the depth, size and metabolic rate of the underlying nodule. A Custom Genetic Algorithm (GA) is tailored to parameterize a tumor by minimizing a fitness function. The study has employed the finite element method to develop simulated data sets and gradient matrix. Furthermore, simulated thermograms are obtained by enveloping the data sets with ±10% random noise.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Termografia/métodos , Temperatura Corporal , Mama/diagnóstico por imagem , Mama/patologia , Feminino , Antebraço/diagnóstico por imagem , Humanos , Masculino , Modelos Genéticos , Tórax/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA