Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120815, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593739

RESUMO

The present research study investigates the performance of pyrolysis oils recycled from waste tires as a collector in coal flotation. Three different types of pyrolysis oils (namely, POT1, POT2, and POT3) were produced through a two-step pressure pyrolysis method followed by an oil rolling process. The characteristics of POTs were adjusted using various oil-modifying additives such as mineral salts and organic solvents. The chemical structure of POTs was explored by employing necessary instrumental analysis techniques, including microwave-assisted acid digestion (MAD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), Fourier-transform infrared spectroscopy (FT-IR), and gas chromatography-mass spectrometry (GC-MS). The collecting performance of POTs in coal flotation was evaluated using an experimental design based on Response Surface Methodology (RSM), considering the ash content and yield of the final concentrate. The effect of the type and dosage of POTs was evaluated in conjunction with other important operating variables, including the dosage of frother, dosage of depressant, and the type of coal. Results of POTs characterization revealed that the pyrolysis oils were a complex composition of light and heavy hydrocarbon molecules, including naphthalene, biphenyl, acenaphthylene, fluorene, and pyrene. Statistical analysis of experimental results showed that among different POTs, POT1 exhibited remarkable superiority, achieving not only a 15% higher coal recovery but also a 12% lower ash content. The outstanding performance of POT1 was attributed to its unique composition, which includes a concentrated presence of carbon chains within the optimal range for efficient flotation. Additionally, the FT-IR spectra of POT1 reveal specific functional groups, including aromatic and aliphatic compounds, greatly enhancing its interaction with coal surfaces, as confirmed by contact angle measurement. This research provides valuable insights into the specific carbon chains and functional groups that contribute to the effectiveness of POT as a collector, facilitating the optimization of coal flotation processes and underscoring the environmental advantages of employing pyrolysis oils as sustainable alternatives in the mining industry.


Assuntos
Carvão Mineral , Pirólise , Reciclagem , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Óleos/química , Automóveis
2.
J Environ Manage ; 317: 115394, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751240

RESUMO

Nowadays, due to the strategic status of nickel in the global market, utilizing its disregarded resources like low-grade nickel containing pyrrhotite is of significant importance. A comprehensive set of experiments and analyses were performed to determine the bioleaching capability and mechanism for nickel extraction from hexagonal and monoclinic pyrrhotite. Over 95% Ni extraction was achieved from the hexagonal pyrrhotite sample. Ni extraction from the monoclinic sample reached its maximum value of 67% and 90% at 3% pulp density, with mixed mesophilic and moderately thermophilic cultures, respectively. Characterization analyses indicated that jarosite and elemental sulfur formation in mixed mesophilic bioleaching reduced the samples' bio-oxidation rate and metal dissolution. The kinetics study revealed that the controlling step in thermophilic bioleaching is the chemical reaction; however, the mixed control model was best fitted on mesophilic data. Electrochemistry studies confirmed bioleaching results and indicated that monoclinic pyrrhotite's oxidation rate under the operating conditions is faster than hexagonal pyrrhotite, and the temperature positively correlates with the oxidation rate. Toxicity assessment analysis showed that the final residues of both bioleached samples could be considered environmentally safe.


Assuntos
Metais , Níquel , Cinética , Metais/química , Níquel/química , Oxirredução , Temperatura
3.
Sci Rep ; 14(1): 14577, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914738

RESUMO

Enrichment of ultrafine liberated valuable minerals from their associated gangue phases is one of the emerging investigation topics within mineral processing and recycling. Using green flotation reagents and turning processes into eco-friendly systems is also one of the challenges in the green transition of ore beneficiation plants. Starch and Tanin as biodegradable depressants for hematite depression have been commercially used in various iron ore processing plants. However, their depression effects on ultrafine particles were not systemically assessed and compared. To fill this gap, this investigation examined the effects of starch, tannin, their mixtures (different ratios), and their different conditioning sequence on the floatability of ultrafine quartz and hematite (- 15 µm). Since the macromolecular polymer of these biodegradable depressants can bind particles together and flocculate them, turbidity analyses were used to assess their optimum ratio for hematite depression without affecting quartz floatability. Turbidity analyses provided a mixture of tannin and starch might enhance the flotation separation of quartz from hematite. Starch could flocculate ultrafine hematite particles, while tannin could disperse ultrafine quartz particles. Floatability experiments indicated that starch had the highest performance in hematite depression (lowest effect on quartz particles) compared to other conditions. Surface analyses (zeta potential and FTIR) proved floatability outcomes and highlighted starch had stronger adsorption on the hematite surface than tannin.

4.
Chemosphere ; 298: 134283, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35288186

RESUMO

This work evaluated a green route for developing an eco-friendly flowsheet to regenerate base and precious metals from waste printed circuits boards (WPCBs). Copper (as nanoparticles with an average diameter of 50 nm) and other base metals were extracted via oxidative acid leaching with high efficiency. Thiocyanate was employed for the first time as a green and economical reagent for the extraction of gold from pretreated WPCB. The effect of various parameters, including reagent dosage and temperature, was evaluated on the gold leaching rate, and 100% gold dissolution was achieved at the optimal condition. It was found that ferric iron concentration as the gold leaching oxidant has a notable effect on gold extraction. Also, at temperatures above room temperature, the recovery rate increases in a short period and then decreases continuously. The activation energy of the optimum gold thiocyanate leaching was found to be 42.84 kJ/mol, indicating chemical reaction to be the rate-controlling step. Gold extraction from the thiocyanate medium was carried out by employing activated carbon, where 100% gold adsorption was achieved in 2 h. Toxicity assessment of final residue revealed that it could be categorized as an environmentally safe waste with negligible risk.


Assuntos
Resíduo Eletrônico , Ácidos , Cobre , Resíduo Eletrônico/análise , Ouro , Reciclagem , Tiocianatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA