Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902422

RESUMO

Inflammasomes have been implicated in the pathogenesis of type 2 diabetes (T2D). However, their expression and functional importance in pancreatic ß-cells remain largely unknown. Mitogen-activated protein kinase 8 interacting protein-1 (MAPK8IP1) is a scaffold protein that regulates JNK signaling and is involved in various cellular processes. The precise role of MAPK8IP1 in inflammasome activation in ß-cells has not been defined. To address this gap in knowledge, we performed a set of bioinformatics, molecular, and functional experiments in human islets and INS-1 (832/13) cells. Using RNA-seq expression data, we mapped the expression pattern of proinflammatory and inflammasome-related genes (IRGs) in human pancreatic islets. Expression of MAPK8IP1 in human islets was found to correlate positively with key IRGs, including the NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3), Gasdermin D (GSDMD) and Apoptosis-associated speck-like protein containing a CARD (ASC), but correlate inversely with Nuclear factor kappa ß1 (NF-κß1), Caspase-1 (CASP-1), Interleukin-18 (IL-18), Interleukin-1ß (IL-1ß) and Interleukin 6 (IL-6). Ablation of Mapk8ip1 by siRNA in INS-1 cells down-regulated the basal expression levels of Nlrp3, NLR family CARD domain containing 4 (Nlrc4), NLR family CARD domain containing 1 (Nlrp1), Casp1, Gsdmd, Il-1ß, Il-18, Il-6, Asc, and Nf-κß1 at the mRNA and/or protein level and decreased palmitic acid (PA)-induced inflammasome activation. Furthermore, Mapk8ip1-silened cells substantially reduced reactive oxygen species (ROS) generation and apoptosis in palmitic acid-stressed INS-1 cells. Nonetheless, silencing of Mapk8ip1 failed to preserve ß-cell function against inflammasome response. Taken together, these findings suggest that MAPK8IP1 is involved in regulating ß-cells by multiple pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Células Secretoras de Insulina , Humanos , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-18 , Interleucina-1beta/metabolismo , Interleucina-6 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Ácido Palmítico , Proteínas Adaptadoras de Transdução de Sinal/genética , Células Secretoras de Insulina/metabolismo
2.
Pediatr Res ; 91(3): 539-544, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33824452

RESUMO

BACKGROUND: This study aimed to assess the telomere length and plasma telomere repeat-binding factor 2 (TRF2) levels in addition to other inflammatory markers in children with sickle cell disease (SCD). METHODS: We enrolled 106 children (90 SCD and 26 controls) aged 1-15 years from the Hematology unit of King Fahad Medical City (KFMC), Saudi Arabia. Genomic DNA extracted from blood and leukocyte TL was determined using quantitative reverse transcription PCR, whereas TRF2, C-reactive protein, interleukin-6, and DNA oxidative damage were determined by using respective commercially available assays. RESULTS: Leukocyte TL was inversely correlated with age in the SCD patients (r = -0.24, P = 0.02) and the controls (r = -0.68, P < 0.0001). In addition, SCD patients had significantly shorter TL (7.74 ± 0.81 kb) (P = 0.003) than controls (8.28 ± 0.73 kb). In contrast, no significant difference in TL among the SCD genotypes (HbSS and HbSß0) has been observed. A modest, positive correlation was seen between TL and reticulocyte % (r = 0.21; P = 0.06). There were no significant differences in the TL and TRF2 concentrations between subjects with HbSS and HbSß0 genotypes. CONCLUSIONS: Short leukocyte TL was significantly associated with SCD. An inverse association was observed between TL and hemoglobin. Hydroxyurea treatment revealed no impact on TL. IMPACT: This study explored the TL and plasma TRF2 in Saudi children with SCD. This is the first documentation that SCD children have shorter TL than their healthy counterparts, and no association between TL and TRF2 has been observed. Hydroxyurea treatment showed no impact on TL in children with SCD. This study is the first of its kind in children with SCD. It will pave the way for another study with a larger sample size in a diverse population to scrutinize these findings better.


Assuntos
Anemia Falciforme , Hidroxiureia , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Biomarcadores , Criança , Humanos , Hidroxiureia/uso terapêutico , Leucócitos , Proteínas de Ligação a Telômeros
3.
Medicina (Kaunas) ; 58(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35334523

RESUMO

Background and Objectives: In this study, we aimed to investigate the link between common -2548G>A (rs7799039) promoter variant of the human leptin gene (LEP) with leptin and serum glucose leptin levels in obese Saudi patients. Materials and Methods: A total of 206 Saudi adults (80 obese normotensive nondiabetics, 76 obese hypertensive with Type 2 Diabetes and 50 normotensive nondiabetic controls) were genotyped for -2548G>A LEP polymorphism using the polymerase chain reaction-restriction fragment-length polymorphism technique. Results: Participants with minor AA genotype had significantly higher blood glucose levels (6.8 ± 0.55 mmol/L vs. 5.8 ± 0.30 mmol/L; p < 0.04) and HOMA-IR (4.1 ± 0.84 vs. 2.6 ± 0.67; p = 0.03) against those carrying major GG genotype. Participants with heterozygous GA genotype had significantly higher serum leptin levels against those carrying major GG genotype (40.0 ± 2.6 ng/mL vs. 29.6 ± 2.6 ng/mL; p = 0.04). Further investigation showed that individuals with AA, GA, GA + AA genotypes are at greater risk of developing hyperglycemia compared to those with GG genotype [OR 3.7(1.6−8.4), p = 0.001; 3.2 (1.2−8.6), p = 0.03; 3.5 (1.6−7.7), p = 0.001, respectively]. Additionally, the -2548AA allele was shown to be a risk factor for hyperglycemia [OR 1.9 (1.2−3.0), p = 0.006]. Our data revealed no relationship between this variant of the LEP gene with systolic and diastolic BP, signifying that this genetic variant is not a significant marker of obesity and hypertension in the Saudi population. Conclusions: AA and GA genotypes and LEP gene -2548AA alleles may signify potent risk factors predisposing healthy individuals to develop T2DM regardless of blood-pressure profile.


Assuntos
Diabetes Mellitus Tipo 2 , Leptina/genética , Adulto , Pressão Sanguínea , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Frequência do Gene , Glucose , Humanos , Obesidade/complicações , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Arábia Saudita/epidemiologia
4.
Curr Issues Mol Biol ; 43(3): 1325-1334, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34698098

RESUMO

Post-menopausal osteoporosis (PMO) is a multifactorial bone disorder in elderly women. Various vitamin D receptor (VDR) gene variants have been studied and associated with osteoporosis in other populations, but not in a homogenous Arab ethnic group. Herein, the current study explores the association between VDR polymorphisms and susceptibility to osteoporosis in Saudi postmenopausal women. In total, 600 Saudi postmenopausal women (N = 300 osteoporosis; N = 300 control) were genotyped for VDR gene variants (rs7975232, rs1544410, rs731236) using TaqMan® SNP genotyping assays. Bone mineral density (BMD) for the lumbar spine and femur was assessed using dual-energy X-ray absorptiometry (DEXA). The heterozygous frequency distributions AC of rs7975232, CT of rs1544410, and AG of rs731236 were significantly higher in the osteoporosis group than controls (p < 0.05). Heterozygous AC of rs7975232 (1.6; 95% CI 1.1-2.3; p < 0.023), CT of rs1544410 (1.6; 95% CI 1.1-2.4; p < 0.022), and AG of rs731236 (1.6; 95% CI 1.1-2.4; p < 0.024) were significantly associated with increased risk of osteoporosis, independent of age and BMI. In conclusion, VDR gene variants rs7975232, rs1544410, rs731236 had a significant effect on BMD and were associated with osteoporosis risk in Saudi postmenopausal women.


Assuntos
Variação Genética , Osteoporose/etiologia , Pós-Menopausa , Receptores de Calcitriol/genética , Idoso , Alelos , Densidade Óssea , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Pessoa de Meia-Idade , Osteoporose/diagnóstico , Osteoporose/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/metabolismo
5.
Pflugers Arch ; 472(10): 1469-1480, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32803305

RESUMO

Dysfunction of the pancreatic ß cells leads to several chronic disorders including diabetes mellitus. Several mediators and mechanisms are known to be involved in the regulation of ß cell secretory function. In this study, we propose that cytokine-induced nitric oxide (NO) production interacts with cholinergic mechanisms to modulate insulin secretion from pancreatic ß cells. Using a rat insulinoma cell line INS-1, we demonstrated that ß cell viability decreases significantly in the presence of SNAP (NO donor) in a concentration- and time-dependent manner. Cell viability was also found to be decreased in the presence of a combined treatment of SNAP with SMN (muscarinic receptor antagonist). We then investigated the impact of these findings on insulin secretion and found a significant reduction in glucose uptake by INS-1 cells in the presence of SNAP and SMN as compared with control. Nitric oxide synthase 3 gene expression was found to be significantly reduced in response to combined treatment with SNAP and SMN suggesting an interaction between the cholinergic and nitrergic systems. The analysis of gene and protein expression further pin-pointed the involvement of M3 muscarinic receptors in the cholinergic pathway. Upon treatment with cytokines, reduced cell viability was observed in the presence of TNF-α and IFN-γ. A significant reduction in insulin secretion was also noted after treatment with TNF-α and IFN-γ and IL1-ß. The findings of the present study have shown for the first time that the inhibition of the excitatory effects of cholinergic pathways on glucose-induced insulin secretion may cause ß cell injury and dysfunction of insulin secretion in response to cytokine-induced NO production.


Assuntos
Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Óxido Nítrico/metabolismo , Receptores Colinérgicos/metabolismo , Animais , Linhagem Celular Tumoral , Células Secretoras de Insulina/efeitos dos fármacos , Interferon gama/farmacologia , Doadores de Óxido Nítrico/farmacologia , Ratos , S-Nitroso-N-Acetilpenicilamina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
6.
BMC Cancer ; 17(1): 738, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121914

RESUMO

BACKGROUND: Altered expression of receptor tyrosine kinases (RTKs) is a major driver of growth and metastasis of cancers. Recepteur d'origine nantais (RON) receptor is a single-pass transmembrane RTK aberrantly expressed in a number of cancers. Efforts to block deregulated RON signaling in tumors using small molecule kinase inhibitors or antibodies are complicated by the presence of unknown number/types of isoforms of RON, which, despite having similar sequences, are localized differently and mediate varied functions. The objective of this study was to identify splice variants of RON transcripts between exons 1 and 10 that code for the extracellular region. METHODS: Direct cDNA sequencing was performed for the transcript between exons 1-10 of RON by Sanger sequencing in various lung cancer cell lines. RESULTS: PCR amplification and bi-directional sequencing of cDNA for section between exons 1 and 10 from lung cancer cell lines revealed the presence of several splice variants of RON transcripts; the variants were formed by skipping of exons 2, 2-3, 5-6, 6 and 8-9. Each of these transcript variants were found in one or more cell lines. While the variants formed by skipping of exons 2, 2-3 and 5-6 resulted in loss of 63, 106 and 109 amino acids, respectively, and didn't cause reading-frameshift, the transcripts formed by skipping of exons 6 and 8-9 caused reading-frameshift. Splice variant lacking exons 8-9 was found in 13 out of 23 cell lines tested. CONCLUSION: Lung cancer cell lines contain several splice variants of RON which involve skipping of exons coding for extracellular region. Some of the splicing changes result in reading-frameshift and the N-terminally truncated isoforms are expected to be secreted out. The ubiquitous nature of alternative splicing events in RON suggests the need for isoform specific approaches to functional analysis and therapeutic targeting of RON.


Assuntos
Espaço Extracelular/genética , Neoplasias Pulmonares/genética , Reação em Cadeia da Polimerase/métodos , Isoformas de Proteínas/genética , Receptores Proteína Tirosina Quinases/genética , Análise de Sequência de DNA/métodos , Linhagem Celular Tumoral , Humanos
7.
Lipids Health Dis ; 15: 54, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26968837

RESUMO

BACKGROUND: Irisin is a recently identified myokine that plays an important role in preventing obesity and insulin resistance. We investigated whether the common FNDC5 (irisin precursor) gene variants influence susceptibility to obesity and type 2 diabetes (T2D) and verified the impact of FNDC5 gene variants on serum irisin levels, glucose and lipid metabolism in a Saudi population. METHODS: Genomic DNA from 814 (394 T2DM and 414 controls) subjects were genotyped for the five common SNPs (rs3480A/G, rs1746661G/T, rs1298190A/G, rs726344A/G and rs1570569G/T) of the FNDC5 gene using the TaqMan genotyping assay. Biochemical parameters and hematic concentrations of irisin and insulin as well as anthropometric indices were collected. RESULTS: Serum irisin levels were higher in T2DM patients compared to controls (p < 0.0001). Analyses of FNDC5 SNPs showed that: 1) The rs3480 GG associates with decreased risk of obesity (p = 0.005; odds ratio: 0.48) and lower body mass index (BMI) values (p = 0.03). In addition, GGAAG was identified as the protective haplotype against risk of obesity (p = 0.001; odds ratio: 0.23). 2) The rs1746661 G allele associates with higher triglyceride (TG) levels (p = 0.019). 3) The rs157069 TT genotype associates with higher fasting insulin (p = 0.029) and HOMA-IR (p = 0.002) as well as with lower circulating irisin levels (p = 0.016). CONCLUSIONS: SNPs in FNDC5 gene correlates with obesity and glucose-lipid metabolism possibly because they modulate the serum levels of irisin.


Assuntos
Glicemia/genética , Fibronectinas/genética , Metabolismo dos Lipídeos/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Adulto , Árabes/genética , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/genética , Feminino , Fibronectinas/metabolismo , Frequência do Gene , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Arábia Saudita
8.
J Immunol ; 190(7): 3716-20, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455496

RESUMO

The TLR5 gene encodes an innate immunity receptor. Mice lacking Tlr5 (T5KO) develop insulin resistance and increased adiposity. Owing to the segregation of a dominant nonsense polymorphism (R392X, rs5744168), a portion of humans lack TLR5 function. We investigated whether the nonsense polymorphism influences obesity and susceptibility to type 2 diabetes (T2D). R392X was genotyped in two cohorts from Saudi Arabia, a region where obesity and type 2 diabetes (T2D) are highly prevalent. The nonsense allele was found to protect from obesity (p(combined) = 0.0062; odds ratio, 0.51) and to associate with lower body mass index (BMI) (p(combined) = 0.0061); this allele also correlated with a reduced production of proinflammatory cytokines. A significant interaction was noted between rs5744168 and sex in affecting BMI (p(interaction) = 0.006), and stratification by gender revealed that the association is driven by females (p(combined) = 0.0016 and 0.0006 for obesity and BMI, respectively). The nonsense polymorphism also associated with BMI in nonobese women. After correction for BMI, the 392X allele was found to represent a risk factor for T2D with a sex-specific effect (p(interaction) = 0.023) mediated by females (p = 0.021; odds ratio, 2.60). Fasting plasma glucose levels in nondiabetic individuals were also higher in women carrying the nonsense allele (p = 0.012). Thus, in contrast to T5KO mice, loss of human TLR5 function protects from weight gain, but in analogy to the animal model, the nonsense allele predisposes to T2D. These effects are apparently sex-specific. Data in this study reinforce the hypothesis that metabolic diseases, including T2D, are associated with immune dysregulation.


Assuntos
Códon sem Sentido , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Receptor 5 Toll-Like/genética , Adulto , Alelos , Índice de Massa Corporal , Citocinas/biossíntese , Feminino , Genótipo , Intolerância à Glucose , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/prevenção & controle , Fatores Sexuais
10.
Clin Endocrinol (Oxf) ; 80(4): 532-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23448427

RESUMO

BACKGROUND: Previous genome-wide association studies have identified multiple type 2 diabetes (T2D) genetic risk loci in many populations. However, the contribution of these loci to T2D in the Middle Eastern populations with high T2D prevalence is unknown. METHODS: Here, we investigated the association of 38 T2D risk loci in the Saudi Arabian population (1166 patients with T2D and 1235 healthy controls), which has one of the world's highest prevalence of T2D. RESULTS: Eight common genetic variants showed a significant association with T2D in our study population. The effect sizes of these loci were comparable to those previously identified in other populations with the exception of HNF4A, which showed a trend for larger effect size in our study population (OR = 1·27) compared to that reported in South Asian populations (OR = 1·09; I(2) = 65·9). Analysis of risk allele scores (RASs) defined by the 8 loci showed that subjects in the top RAS quintile (n = 480) had 2·5-fold increase in disease risk compared to those in the bottom quintile (n = 480; P = 9·5 × 10(-12)). RASs were also associated with fasting glucose level (ß = 0·12; P = 2·2 × 10(-9)), but not with BMI (P = 0·19). Analysis of a subgroup of subjects with BMI≤30 resulted in two additional loci (SLC30A8; P = 0·03, HMG20A; P = 0·02) showing significant association with T2D. CONCLUSIONS: We have shown for the first time that variants at WFS1, JAZF1, SLC30A8, CDKN2A/B, TCF7L2, KCNQ1, HMG20A, HNF4A and DUSP9 are associated with T2D in the Saudi population. Our findings also suggest substantial overlap of T2D risk loci across many ethnic groups regardless of disease prevalence.


Assuntos
Árabes/genética , Diabetes Mellitus Tipo 2/genética , Adulto , Idoso , Alelos , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Loci Gênicos , Fator 4 Nuclear de Hepatócito/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Arábia Saudita/epidemiologia , População Branca/genética
11.
J Immunol ; 188(3): 1325-32, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22219324

RESUMO

The vitamin D receptor (VDR) gene has been involved in the modulation of susceptibility to inflammatory and autoimmune conditions, and could play a role in the pathogenesis of type 2 diabetes mellitus (T2DM). Susceptibility to T2DM was recently also suggested to associate with HLA alleles. We evaluated possible correlations between VDR polymorphisms, HLA alleles, and risk for development of T2DM by analyzing 627 individuals (368 T2DM patients and 259 healthy control subjects) part of a well-characterized cohort followed in Riyadh, Kingdom of Saudi Arabia. Genomic DNA was genotyped for the VDR gene single nucleotide polymorphisms of Fok-1, Taq-1, ApaI, and Bsm-I. Analyses were run by allelic discrimination real-time PCR. HLA genotyping was performed as well by PCR using sequence-specific primers, whereas cytokine production was evaluated by FACS. Results showed T2DM to be significantly associated with the VDR Taq1 (rs731236-AG) and Bsm-I (rs1544410-CT) genotypes, and the VDR rs1544410-T allele. Cosegregations resulting in significant increases of T2DM odds ratio were detected between Taq1 and Bsm-I VDR polymorphisms and HLA DRB1*04. Notably, the VDR polymorphisms observed to be more frequent in T2DM patients correlated with increased VDR expression and IL-12 production, as well as with metabolic parameters of susceptibility to T2DM, including serum cholesterol and high-density lipoprotein levels. VDR polymorphisms are present in T2DM, and correlate with HLA DRB1*04 and with immunologic and metabolic parameters; results from this study add T2DM to the list of diseases that are likely modulated by an HLA/VDR interaction.


Assuntos
Diabetes Mellitus Tipo 2/genética , Cadeias HLA-DRB1/genética , Polimorfismo Genético , Receptores de Calcitriol/genética , Estudos de Casos e Controles , Segregação de Cromossomos , Diabetes Mellitus Tipo 2/epidemiologia , Suscetibilidade a Doenças , Genética Populacional , Humanos , Arábia Saudita/epidemiologia
12.
Mol Biol Rep ; 41(3): 1731-40, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24435973

RESUMO

Obesity, commonly measured as body mass index (BMI), has been on a rapid rise around the world and is an underlying cause of several chronic non-communicable diseases, including type 2 diabetes mellitus (T2DM). In addition to the environmental factors, genetic factors may also contribute to the ongoing obesity epidemic in Saudi Arabia. This study investigated the association between variants of 36 previously established T2DM SNPs and obesity phenotypes in a population of Saudi subjects. Study subjects consisted of 975 obese (BMI: ≥30), 825 overweight (25-30) and 423 lean controls (18-25) and of these 927 had a history of T2DM. Subjects were genotyped for 36 SNPs, which have been previously proved to be T2DM linked, using the KASPar method and the means of BMI and waist circumference (WC) corresponding to each of the genotypes were compared by additive, recessive and dominant genetic models. Five and seven of 36 T2DM-related SNPs were significantly associated with the BMI and WC, respectively. Variants of SNPs rs7903146, rs1552224 and rs11642841 in the control group and rs7903146 in T2DM group showed significant association with both BMI and WC. Variant of SNP rs10440833 was significantly associated with BMI in T2DM group of both males [OR = 1.8 (1.0, 3.3); P = 0.04] and females [OR = 2.0 (1.0, 3.9); P = 0.04]. Genetic risk scores explained 19 and 14% of WC and hip size variance in this population. Variants of a number of established T2DM related SNPs were associated with obesity phenotypes and may be significant hereditary factors in the pathogenesis of T2DM.


Assuntos
Índice de Massa Corporal , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Obesidade/genética , Adulto , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Feminino , Estudos de Associação Genética , Genética Populacional , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/patologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Arábia Saudita
13.
BMC Pediatr ; 14: 17, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24450480

RESUMO

BACKGROUND: Asthma is the most common chronic childhood disease. Imbalance of cytokines released from T helper cells and environmental factors, such as exposure to poly-aromatic hydrocarbon (PAH), play pivotal roles in the pathogenesis of asthma. The aim of this study was to compare the mRNA expression patterns of Interleukin (IL)-4, interferon (IFN)-γ and Acyl Co A long chain 3 (ACSL3) in peripheral blood leukocytes of children with and without asthma. To correlate the obtained mRNA data with serum IL-4, IFN-γ and PAH levels. Further, to determine the effect of in vivo exposure to PAH on mRNA expression of IL-4, IFN-γ and ACSL3 genes in a rat model. METHODS: A total of 170 children below 16 years (85 pediatric asthma patients and 85 matched healthy controls) were randomly selected from the Riyadh Cohort, Saudi Arabia. Gene expression analysis was performed using qRTPCR. Serum IL-4, IFN-γ and PAH were measured using LINCOplex (human multiplex immunoassay kit) and HPLC respectively. RESULTS: IL-4 mRNA expression was significantly increased (P < 0.05) in children with asthma compared to healthy control group whereas no differences were observed for either IFN-γ or ACSL3 mRNA. Similarly, serum IL- 4 and PAHs concentration was significantly higher as well in children with asthma in whom IFN-γ was also significantly lower. Results obtained in rats showed that exposure to the benzopyrene prototype PAH resulted in a 2.6 fold (P < 0.001) increased IL-4 mRNA expression in blood. CONCLUSION: Peripheral blood IL-4 mRNA levels, serum concentration of this cytokine are elevated in children with asthma. Also, elevated levels of PAH were observed in children with asthma. Additionally, PAH administration in rodents resulted in an increased IL-4 mRNA which is supposed to partly mediate the inflammatory response noted in asthma.


Assuntos
Asma/metabolismo , Benzopirenos/análise , Interleucina-4/sangue , RNA Mensageiro/biossíntese , RNA Mensageiro/sangue , Acil Coenzima A/sangue , Acil Coenzima A/genética , Adolescente , Animais , Asma/genética , Criança , Estudos Transversais , Humanos , Interferon gama/sangue , Interferon gama/genética , Interleucina-4/genética , Monócitos/metabolismo , Ratos , Ratos Wistar
14.
Life Sci ; 345: 122608, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574885

RESUMO

BACKGROUND AND AIMS: The protein phosphatase 1 regulatory inhibitor subunit 1A (PPP1R1A) has been linked with insulin secretion and diabetes mellitus. Yet, its full significance in pancreatic ß-cell function remains unclear. This study aims to elucidate the role of the PPP1R1A gene in ß-cell biology using human pancreatic islets and rat INS-1 (832/13) cells. RESULTS: Disruption of Ppp1r1a in INS-1 cells was associated with reduced insulin secretion and impaired glucose uptake; however, cell viability, ROS, apoptosis or proliferation were intact. A significant downregulation of crucial ß-cell function genes such as Ins1, Ins2, Pcsk1, Cpe, Pdx1, Mafa, Isl1, Glut2, Snap25, Vamp2, Syt5, Cacna1a, Cacna1d and Cacnb3, was observed upon Ppp1r1a disruption. Furthermore, silencing Pdx1 in INS-1 cells altered PPP1R1A expression, indicating that PPP1R1A is a target gene for PDX1. Treatment with rosiglitazone increased Ppp1r1a expression, while metformin and insulin showed no effect. RNA-seq analysis of human islets revealed high PPP1R1A expression, with α-cells showing the highest levels compared to other endocrine cells. Muscle tissues exhibited greater PPP1R1A expression than pancreatic islets, liver, or adipose tissues. Co-expression analysis revealed significant correlations between PPP1R1A and genes associated with insulin biosynthesis, exocytosis machinery, and intracellular calcium transport. Overexpression of PPP1R1A in human islets augmented insulin secretion and upregulated protein expression of Insulin, MAFA, PDX1, and GLUT1, while silencing of PPP1R1A reduced Insulin, MAFA, and GLUT1 protein levels. CONCLUSION: This study provides valuable insights into the role of PPP1R1A in regulating ß-cell function and glucose homeostasis. PPP1R1A presents a promising opportunity for future therapeutic interventions.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Proteína Fosfatase 1 , Animais , Humanos , Ratos , Canais de Cálcio/metabolismo , Linhagem Celular , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
15.
Life Sci ; 339: 122421, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232799

RESUMO

AIMS: In this study, we investigated the role of the FTO gene in pancreatic ß-cell biology and its association with type 2 diabetes (T2D). To address this issue, human pancreatic islets and rat INS-1 (832/13) cells were used to perform gene silencing, overexpression, and functional analysis of FTO expression; levels of FTO were also measured in serum samples obtained from diabetic and obese individuals. RESULTS: The findings revealed that FTO expression was reduced in islets from hyperglycemic/diabetic donors compared to normal donors. This reduction correlated with decreased INS and GLUT1 expression and increased PDX1, GCK, and SNAP25 expression. Silencing of Fto in INS-1 cells impaired insulin release and mitochondrial ATP production and increased apoptosis in pro-apoptotic cytokine-treated cells. However, glucose uptake and reactive oxygen species production rates remained unaffected. Downregulation of key ß-cell genes was observed following Fto-silencing, while Glut2 and Gck were unaffected. RNA-seq analysis identified several dysregulated genes involved in metal ion binding, calcium ion binding, and protein serine/threonine kinase activity. Furthermore, our findings showed that Pdx1 or Mafa-silencing did not influence FTO protein expression. Overexpression of FTO in human islets promoted insulin secretion and upregulated INS, PDX1, MAFA, and GLUT1 expression. Serum FTO levels did not significantly differ between individuals with diabetes or obesity and their healthy counterparts. CONCLUSION: These findings suggest that FTO plays a crucial role in ß-cell survival, metabolism, and function and point to a potential therapeutic utility of FTO in T2D patients.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Ratos , Animais , Secreção de Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/genética , Obesidade/metabolismo , Glucose/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
16.
Cells ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667300

RESUMO

Interleukin-6 (IL6) is a pleiotropic cytokine implicated in metabolic disorders and inflammation, yet its precise influence on insulin secretion and glucose metabolism remains uncertain. This study examined IL6 expression in pancreatic islets from individuals with/without diabetes, alongside a series of functional experiments, including siRNA silencing; IL6 treatment; and assessments of glucose uptake, cell viability, apoptosis, and expression of key ß-cell genes, which were conducted in both INS-1 cells and human islets to elucidate the effect of IL6 on insulin secretion. Serum levels of IL6 from Emirati patients with type 2 diabetes (T2D) were measured, and the effect of antidiabetic drugs on IL6 levels was studied. The results revealed that IL6 mRNA expression was higher in islets from diabetic and older donors compared to healthy or young donors. IL6 expression correlated negatively with PDX1, MAFB, and NEUROD1 and positively with SOX4, HES1, and FOXA1. Silencing IL6 in INS-1 cells reduced insulin secretion and glucose uptake independently of apoptosis or oxidative stress. Reduced expression of IL6 was associated with the downregulation of Ins, Pdx1, Neurod1, and Glut2 in INS-1 cells. In contrast, IL6 treatment enhanced insulin secretion in INS-1 cells and human islets and upregulated insulin expression. Serum IL6 levels were elevated in patients with T2D and associated with higher glucose, HbA1c, and triglycerides, regardless of glucose-lowering medications. This study provides a new understanding of the role of IL6 in ß-cell function and the pathophysiology of T2D. Our data highlight differences in the response to IL6 between INS-1 cells and human islets, suggesting the presence of species-specific variations across different experimental models. Further research is warranted to unravel the precise mechanisms underlying the observed effects of IL-6 on insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2 , Secreção de Insulina , Interleucina-6 , Ilhotas Pancreáticas , Humanos , Interleucina-6/metabolismo , Interleucina-6/sangue , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Glucose/metabolismo , Insulina/metabolismo , Insulina/sangue , Ratos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Linhagem Celular , Idoso , Apoptose/efeitos dos fármacos
17.
Metabolites ; 13(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837926

RESUMO

Mitogen-activated protein kinase 8 interacting protein-1 (MAPK8IP1) gene has been recognized as a susceptibility gene for diabetes. However, its action in the physiology of pancreatic ß-cells is not fully understood. Herein, bioinformatics and genetic analyses on the publicly available database were performed to map the expression of the MAPK8IP1 gene in human pancreatic islets and to explore whether this gene contains any genetic variants associated with type 2 diabetes (T2D). Moreover, a series of functional experiments were executed in a rat insulinoma cell line (INS-1 832/13) to investigate the role of the Mapk8ip1 gene in ß-cell function. Metabolic engineering using RNA-sequencing (RNA-seq) data confirmed higher expression levels of MAPK8IP1 in human islets compared to other metabolic tissues. Additionally, comparable expression of MAPK8IP1 expression was detected in sorted human endocrine cells. However, ß-cells exhibited higher expression of MAPK8IP1 than ductal and PSC cells. Notably, MAPK8IP1 expression was reduced in diabetic islets, and the expression was positively correlated with insulin and the ß-cell transcription factor PDX1 and MAFA. Using the TIGER portal, we found that one genetic variant, "rs7115753," in the proximity of MAPK8IP1, passes the genome-wide significance for the association with T2D. Expression silencing of Mapk8ip1 by small interfering RNA (siRNA) in INS-1 cells reduced insulin secretion, glucose uptake rate, and reactive oxygen species (ROS) production. In contrast, insulin content, cell viability, and apoptosis without cytokines were unaffected. However, silencing of Mapk8ip1 reduced cytokines-induced apoptosis and downregulated the expression of several pancreatic ß-cell functional markers including, Ins1, Ins2, Pdx1, MafA, Glut2, Gck, Insr, Vamp2, Syt5, and Cacna1a at mRNA and/or protein levels. Finally, we reported that siRNA silencing of Pdx1 resulted in the downregulation of MAPK8IP1 expression in INS-1 cells. In conclusion, our findings confirmed that MAPK8IP1 is an important component of pancreatic ß-cell physiology and insulin secretion.

18.
Exp Biol Med (Maywood) ; 248(4): 339-349, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36740767

RESUMO

Mounting evidence points to a link between growth differentiation factor-15 (GDF15) expression and the onset and progression of diabetes mellitus. However, the exact role of GDF15 in pancreatic ß-cell function is unclear. To examine the role of GDF15 in ß-cell function, bioinformatics analysis and functional experiments involving GDF15 silencing and overexpression were performed in INS-1 cells and human islets. Public microarray and RNA-seq expression data showed that islets obtained from diabetic donors express high levels of GDF15 compared to islets obtained from normal donors. Moreover, analysis of RNA-seq expression data revealed that GDF15 expression correlates positively with that of insulin (INS), KCNJ11, GLUT1, MAFA, INSR and negatively with that of Glucokinase (GCK) and Alpha-Ketoglutarate Dependent Dioxygenase (FTO). No T2D-associated genetic variants in the GDF15 were found to pass genome-wide significance in the TIGER portal. Expression silencing of Gdf15 in INS-1 cells reduced insulin release, glucose uptake levels, increased reactive oxygen species (ROS) production and apoptosis levels. While Gdf15-silenced cells downregulated mRNA expression of Ins, Pdx1, Mafa, and Glut2 genes, its overexpression human islets was associated with increased insulin secretion and upregulated expression of MAFA and GLUT1 but not INS or GCK. Silencing of Pdx1 or Mafa in INS-1 cells did not affect the expression of GDF15. These findings suggest that GDF15 plays a significant role in pancreatic ß-cell function.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Secreção de Insulina , Transportador de Glucose Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
20.
Mol Cell Endocrinol ; 574: 111987, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311518

RESUMO

The role of "Family with sequence similarity 105, member A" (FAM105A) in pancreatic ß-cell function in relation to type 2 diabetes mellitus (T2D) is not fully understood. To address this issue, various molecular and functional experiments were conducted on primary human islets and INS-1 cells. RNA-seq expression analysis showed that FAM105A is highly expressed in human islets and its expression is reduced in diabetic islets compared to healthy islets. FAM105A expression correlated negatively with HbA1c levels and body mass index (BMI). Co-expression analysis showed a significant correlation between FAM105A with PDX1, GCK, GLUT1 and INSR, but not the INS gene. Silencing of Fam105a impaired insulin release, content, glucose uptake, and mitochondria ATP content but did not affect cell viability, reactive oxygen species (ROS) or apoptosis levels. Silencing of Fam105a was associated with reduced Pdx1 and Glut2 expression at mRNA and protein levels. RNA-seq analysis of dysregulated genes in Fam105a-silenced cells showed an overall downregulation of gene expression in ß-cells and insulin secretion pathway. Disrupting Pdx1 did not affect Fam105a expression in INS-1 cells. Overall, the results suggest that FAM105A plays an important role in pancreatic ß-cells biology and may be involved in the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Secreção de Insulina , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sobrevivência Celular/genética , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA