Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401565, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864572

RESUMO

We present our findings on the on-surface synthesis of polyboroxine molecules derived from boroxine molecules precursors. This process is promoted by oxygen species present on the Au(111) surface: oxygen atoms facilitate the detachment of naphthalene units of trinaphthyl-boroxine molecules and bridge two unsaturated boroxine centers to form a boroxine-O-boroxine chemical motif. X-ray spectroscopic characterization shows that, as the synthesis process proceeds, it progressively tunes the electronic properties of the interface, thus providing a promising route to control the electron level alignment. .

2.
Nano Lett ; 22(1): 164-171, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936370

RESUMO

Open-shell graphene nanoribbons have become promising candidates for future applications, including quantum technologies. Here, we characterize magnetic states hosted by chiral graphene nanoribbons (chGNRs). The substitution of a hydrogen atom at the chGNR edge by a ketone effectively adds one pz electron to the π-electron network, producing an unpaired π-radical. A similar scenario occurs for regular ketone-functionalized chGNRs in which one ketone is missing. Two such radical states can interact via exchange coupling, and we study those interactions as a function of their relative position, which includes a remarkable dependence on the chirality, as well as on the nature of the surrounding ribbon, that is, with or without ketone functionalization. Besides, we determine the parameters whereby this type of system with oxygen heteroatoms can be adequately described within the widely used mean-field Hubbard model. Altogether, we provide insight to both theoretically model and devise GNR-based nanostructures with tunable magnetic properties.

3.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373234

RESUMO

1,4-Bis(5-phenyl-2-oxazolyl)benzene (POPOP) is a common scintillation fluorescent laser dye. In this manuscript, the synthesis of 2-Ar-5-(4-(4-Ar'-1H-1,2,3-triazol-1-yl)phenyl)-1,3,4-oxadiazoles (Ar, Ar' = Ph, naphtalenyl-2, pyrenyl-1, triphenilenyl-2), as PAH-based aza-analogues of POPOP, by means of Cu-catalyzed click reaction between 2-(4-azidophenyl)-5-Ar-1,3,4-oxadiazole and terminal ethynyl-substituted PAHs is reported. An investigation of the photophysical properties of the obtained products was carried out, and their sensory response to nitroanalytes was evaluated. In the case of pyrenyl-1-substituted aza-POPOP, dramatic fluorescence quenching by nitroanalytes was observed.


Assuntos
Hidrocarbonetos , Fluorescência
4.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446917

RESUMO

Two new azaheterocycle-based bolas, such as (1-(4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenyl)-1H-1,2,3-triazol-4-yl)-methylenyls α,ω-bisfunctionalized PEGs, were prepared via Cu-catalyzed click reaction between 2-(4-azidophenyl)-5-(aryl)-oxadiazole-1,3,4 and terminal ethynyls derived from PEG-3 and PEG-4. Due to the presence of two heteroaromatic cores and a PEG linker, these bola molecules are considered as promising fluorescent chemosensors for electron-deficient species. As a result of a well-pronounced "turn-off" fluorescence response towards common nitro-explosive components, such as 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT), hard-to-detect pentaerythritol tetranitrate (PETN), as well as Hg2+ cation was observed.


Assuntos
Substâncias Explosivas , Trinitrotolueno
5.
Phys Chem Chem Phys ; 23(18): 10845-10851, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33908516

RESUMO

The on-surface synthesis of non-planar nanographenes is a challenging task. Herein, with the aid of bond-resolving scanning tunneling microscopy (BRSTM) and density functional theory (DFT) calculations, we present a systematic study aiming at the fabrication of corannulene-based nanographenes via intramolecular cyclodehydrogenation on a Au(111) surface. The formation of non-planar targeted products is confirmed to be energetically unfavorable compared to the formation of planar/quasi-planar undesired competing monomer products. In addition, the activation of intermolecular coupling further inhibits the formation of the final targeted product. Although it was not possible to access the corannulene moiety by means of on-surface synthesis, partial cyclodehydrogenation of the molecular precursors was demonstrated.

6.
Chemphyschem ; 20(18): 2305-2310, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31328365

RESUMO

Within the collection of surface-supported reactions currently accessible for the production of extended molecular nanostructures under ultra-high vacuum, Ullmann coupling has been the most successful in the controlled formation of covalent single C-C bonds. Particularly advanced control of this synthetic tool has been obtained by means of hierarchical reactivity, commonly achieved by the use of different halogen atoms that consequently display distinct activation temperatures. Here we report on the site-selective reactivity of certain carbon-halogen bonds. We use precursor molecules halogenated with bromine atoms at two non-equivalent carbon atoms and found that the Ullmann coupling occurs on Au(111) with a remarkable predilection for one of the positions. Experimental evidence is provided by means of scanning tunneling microscopy and core level photoemission spectroscopy, and a rationalized understanding of the observed preference is obtained from density functional theory calculations.

7.
Biomed Rep ; 21(2): 118, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38938739

RESUMO

The choice between nodulectomy and lobectomy for managing thyroid nodules is a subject of debate in the field of thyroid surgery. The present study aims to share the experience of a single center in managing solitary thyroid nodules through nodulectomy from January 2023 to October 2023. The inclusion criteria encompassed symptomatic or suspicious solitary nodules and medically necessitated cases. The extracted data included patient demographics, medical history, symptoms, diagnostic details, surgery indication, procedure outcome and histopathological findings. The follow-up included clinic visits and phone calls. The mean age of the patients was 36.64±11.63 years, with 85.0% females and 15.0% males. Predominantly, patients were housewives (58.5%). Neck swelling (62.3%) was the most common presentation. Ultrasound examination revealed mixed nodules in more than half of the cases (54.7%). Right nodulectomy was performed in 26 cases (49.1%) and left nodulectomy in 23 (43.4%), and four cases (7.5%) underwent isthmusectomy. The mean operation time was 36.04±9.37 min and no drainage tube was used in any of the cases. One case (1.9%) of seroma was the only observed complication during the observational period. Nodulectomy may be a suitable choice for managing benign, large, solitary thyroid nodules, small suspicious nodules or microcarcinomas.

8.
Vet World ; 17(4): 842-847, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38798290

RESUMO

Background and Aim: Query fever (Q fever) is an endemic zoonotic disease and ruminants are considered to be the primary source of infection in humans. It is caused by Coxiella burnetii which is an obligate intracellular bacterial pathogen with a worldwide distribution. This study estimated the prevalence of Q fever in livestock with a history of abortion in Makkah Province, Saudi Arabia. Material and Methods: Sera from 341 camels, 326 sheep, and 121 goats of either sex from various locations (Makkah, Jeddah, AL-Taif, AL-Qunfudah, AL-Laith, and AL-Kamil) were examined using a Q fever indirect enzyme-linked immunosorbent assay. Results: Among the 788 serum samples, 356 animals had anti-Coxiella burnetii immunoglobulin G antibodies with an overall seroprevalence of 45.4%. Significant differences were observed in seroprevalence between species and locations. Camels had the highest percentage of Q fever-positive sera, with a prevalence of 50.4%, followed by goats (44.6%) and sheep (36.8%), with a high significant difference between animals (p = 0.000). The prevalence was significantly higher in Makkah (65.4%) than in Jeddah (28.8%). Conclusion: C. burnetii infection is prevalent in agricultural animals, especially camels maintained at livestock farms in Makkah province. Therefore, these animals considered as the main source of Q fever infections in Saudi Arabia, which is also a reason for the abortion in these animals. Therefore, there is an urgent need for further studies on Q fever infection with interventional approaches for prevention and control.

9.
Nanoscale ; 16(2): 734-741, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38086686

RESUMO

In the last few years we have observed a breakpoint in the development of graphene-derived technologies, such as liquid phase filtering and their application to electronics. In most of these cases, they imply exposure of the material to solvents and ambient moisture, either in the fabrication of the material or the final device. The present study demonstrates the sensitivity of graphene nanoribbon (GNR) zigzag edges to water, even in extremely low concentrations. We have addressed the unique reactivity of (3,1)-chiral GNR with moisture on Au(111). Water shows a reductive behaviour, hydrogenating the central carbon of the zigzag segments. By combining scanning tunnelling microscopy (STM) with simulations, we demonstrate how their reactivity reaches a thermodynamic limit when half of the unit cells are reduced, resulting in an alternating pattern of hydrogenated and pristine unit cells starting from the terminal segments. Once a quasi-perfect alternation is reached, the reaction stops regardless of the water concentration. The hydrogenated segments limit the electronic conjugation of the GNR, but the reduction can be reversed both by tip manipulation and annealing. Selective tip-induced dehydrogenation allowed the stabilization of radical states at the edges of the ribbons, while the annealing of the sample completely recovered the original, pristine GNR.

10.
Nat Chem ; 14(12): 1451-1458, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36163268

RESUMO

Carbon nanostructures with zigzag edges exhibit unique properties-such as localized electronic states and spins-with exciting potential applications. Such nanostructures however are generally synthesized under vacuum because their zigzag edges are unstable under ambient conditions: a barrier that must be surmounted to achieve their scalable integration into devices for practical purposes. Here we show two chemical protection/deprotection strategies, demonstrated on labile, air-sensitive chiral graphene nanoribbons. Upon hydrogenation, the chiral graphene nanoribbons survive exposure to air, after which they are easily converted back to their original structure by annealing. We also approach the problem from another angle by synthesizing a form of the chiral graphene nanoribbons that is functionalized with ketone side groups. This oxidized form is chemically stable and can be converted to the pristine hydrocarbon form by hydrogenation and annealing. In both cases, the deprotected chiral graphene nanoribbons regain electronic properties similar to those of the pristine nanoribbons. We believe both approaches may be extended to other graphene nanoribbons and carbon-based nanostructures.

11.
ACS Nano ; 15(3): 4937-4946, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33630588

RESUMO

The combination of alkyne and halogen functional groups in the same molecule allows for the possibility of many different reactions when utilized in on-surface synthesis. Here, we use a pyrene-based precursor with both functionalities to examine the preferential reaction pathway when it is heated on an Au(111) surface. Using high-resolution bond-resolving scanning tunneling microscopy, we identify multiple stable intermediates along the prevailing reaction pathway that initiate with a clearly dominant Glaser coupling, together with a multitude of other side products. Importantly, control experiments with reactants lacking the halogen functionalization reveal the Glaser coupling to be absent and instead show the prevalence of non-dehydrogenative head-to-head alkyne coupling. We perform scanning tunneling spectroscopy on a rich variety of the product structures obtained in these experiments, providing key insights into the strong dependence of their HOMO-LUMO gaps on the nature of the intramolecular coupling. A clear trend is found of a decreasing gap that is correlated with the conversion of triple bonds to double bonds via hydrogenation and to higher levels of cyclization, particularly with nonbenzenoid product structures. We rationalize each of the studied cases.

12.
Nanoscale Adv ; 3(8): 2351-2358, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36133758

RESUMO

Combining on-surface synthetic methods with the power of scanning tunneling microscopy to characterize novel materials at the single molecule level, we show how to steer the reactivity of one anthracene-based precursor towards different product nanostructures. Whereas using a Au(111) surface with three-fold symmetry results in the dominant formation of a starphene derivative, the two-fold symmetry of a reconstructed Au(110) surface allows the selective growth of non-benzenoid linear conjugated polymers. We further assess the electronic properties of each of the observed product structures via tunneling spectroscopy and DFT calculations, altogether advancing the synthesis and characterization of molecular structures of notable scientific interest that have been only scarcely investigated to date, as applies both to starphenes and to non-benzenoid conjugated polymers.

13.
Front Genet ; 12: 742808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868214

RESUMO

Theileria annulata, which causes tropical theileriosis, is a major impediment to improving cattle production in Sudan. Tropical theileriosis disease is prevalent in the north and central regions of Sudan. Outbreaks of the disease have been observed outside the known endemic areas, in east and west regions of the country, due to changes in tick vector distribution and animal movement. A live schizont attenuated vaccination based on tissue culture technology has been developed to control the disease. The parasite in the field as well as the vaccine strain need to be genotyped before the vaccinations are practiced, in order to be able to monitor any breakthrough or breakdown, if any, after the deployment of the vaccine in the field. Nine microsatellite markers were used to genotype 246 field samples positive for T. annulata DNA and the vaccine strain. North and central populations have a higher multiplicity of infection than east and west populations. The examination of principal components showed two sub-structures with a mix of all four populations in both clusters and the vaccine strain used being aligned with left-lower cluster. Only the north population was in linkage equilibrium, while the other populations were in linkage disequilibrium, and linkage equilibrium was found when all samples were regarded as single population. The genetic identity of the vaccine and field samples was 0.62 with the north population and 0.39 with west population. Overall, genetic investigations of four T. annulata populations in Sudan revealed substantial intermixing, with only two groups exhibiting regional origin independence. In the four geographically distant regions analyzed, there was a high level of genetic variation within each population. The findings show that the live schizont attenuated vaccine, Atbara strain may be acceptable for use in all Sudanese regions where tropical theileriosis occurs.

14.
ACS Nano ; 15(10): 16552-16561, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34633170

RESUMO

The advent of on-surface chemistry under vacuum has vastly increased our capabilities to synthesize carbon nanomaterials with atomic precision. Among the types of target structures that have been synthesized by these means, graphene nanoribbons (GNRs) have probably attracted the most attention. In this context, the vast majority of GNRs have been synthesized from the same chemical reaction: Ullmann coupling followed by cyclodehydrogenation. Here, we provide a detailed study of the growth process of five-atom-wide armchair GNRs starting from dibromoperylene. Combining scanning probe microscopy with temperature-dependent XPS measurements and theoretical calculations, we show that the GNR growth departs from the conventional reaction scenario. Instead, precursor molecules couple by means of a concerted mechanism whereby two covalent bonds are formed simultaneously, along with a concomitant dehydrogenation. Indeed, this alternative reaction path is responsible for the straight GNR growth in spite of the initial mixture of reactant isomers with irregular metal-organic intermediates that we find. The provided insight will not only help understanding the reaction mechanisms of other reactants but also serve as a guide for the design of other precursor molecules.

15.
ACS Nano ; 15(3): 5610-5617, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33656868

RESUMO

Nanostructured graphene has been widely studied in recent years due to the tunability of its electronic properties and its associated interest for a variety of fields, such as nanoelectronics and spintronics. However, many of the graphene nanostructures of technological interest are synthesized under ultrahigh vacuum, and their limited stability as they are brought out of such an inert environment may compromise their applicability. In this study, a combination of bond-resolving scanning probe microscopy (BR-SPM), along with theoretical calculations, has been employed to study (3,1)-chiral graphene nanoribbons [(3,1)-chGNRs] that were synthesized on a Au(111) surface and then exposed to oxidizing environments. Exposure to the ambient atmosphere, along with the required annealing treatment to desorb a sufficiently large fraction of contaminants to allow for its postexposure analysis by BR-SPM, revealed a significant oxidation of the ribbons, with a dramatically disruptive effect on their electronic properties. More controlled experiments avoiding high temperatures and exposing the ribbons only to low pressures of pure oxygen show that also under these more gentle conditions the ribbons are oxidized. From these results, we obtain additional insights into the preferential reaction sites and the nature of the main defects that are caused by oxygen. We conclude that graphene nanoribbons with zigzag edge segments require forms of protection before they can be used in or transferred through ambient conditions.

16.
Ultrason Sonochem ; 64: 105050, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32171682

RESUMO

In this work, the effect of ultrasound irradiation on the catalytic oxidative/adsorptive denitrogenation (COADN) of model hydrocarbon fuels (composed of pyrroleor indoleas an organonitrogen compounds dissolved in n-nonane) has been investigated using magnetic reduced graphene oxide supported with phosphomolybdic acid (PMo-Fe3O4/rGO) as a heterogeneous catalyst/adsorbent and hydrogen peroxide as an oxidant. The synthesized PMo-Fe3O4/rGO nanocomposite was characterized by XRD, FE-SEM, VSM and BET surface area analysis methods. Moreover, different experimental variables including catalyst dose, initial pyrrole/indoleconcentration, H2O2 to pyrrole/indole molar ratio, ultrasound power and sonication time have been studied on the COADN process. The regeneration/recyclability of PMo-Fe3O4/rGO catalyst was also examined. Experimental results revealed that, the ultrasound treatment significantly improved the adsorption process of organonitrogen compounds from model fuels (qe increased by 50.3% for pyrrole and 18% for indole). Furthermore, high ultrasound-aided catalytic oxidative denitrogenation efficiency (85.6% for pyrrole and 90% for indole) has been attained under optimal conditions (ultrasonic power = 200 W, sonication time = 240 min, catalyst dose = 2 g/L, and H2O2:pyrrole/indole molar ratio = 5). The recyclability of catalyst displayed that the prepared catalyst can be reused five times without any significant reduction in its performance.

17.
Chem Commun (Camb) ; 56(61): 8659-8662, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32602478

RESUMO

We report a multi-step on-surface synthesis strategy. The first step consists in the surface-supported synthesis of metal-organic complexes, which are subsequently used to steer on-surface alkyne coupling reactions. In addition, we analyze and compare the electronic properties of the different coupling motifs obtained.

18.
Chem Sci ; 11(21): 5441-5446, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-34094071

RESUMO

Fine management of chiral processes on solid surfaces has progressed over the years, yet still faces the need for the controlled and selective production of advanced chiral materials. Here, we report on the use of enantiomerically enriched molecular building blocks to demonstrate the transmission of their intrinsic chirality along a sequence of on-surface reactions. Triggered by thermal annealing, the on-surface reactions induced in this experiment involve firstly the coupling of the chiral reactants into chiral polymers and subsequently their transformation into planar prochiral graphene nanoribbons. Our study reveals that the axial chirality of the reactant is not only transferred to the polymers, but also to the planar chirality of the graphene nanoribbon end products. Such chirality transfer consequently allows, starting from adequate enantioenriched reactants, for the controlled production of chiral and prochiral organic nanoarchitectures with pre-defined handedness.

19.
Chem Commun (Camb) ; 56(19): 2833-2836, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32065182

RESUMO

The self-assembly of leucoquinizarin molecules on Au(111) surfaces is shown to be characterized by the molecules mostly being in their keto-enolic tautomeric form, with evidence of their temporary switching to other tautomeric forms. This reveals a metastable chemistry of the assembled molecules, to be considered for their possible employment in the formation of more complex hetero-organic interfaces.

20.
ACS Nano ; 14(4): 4499-4508, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32101402

RESUMO

We extensively characterize the electronic structure of ultranarrow graphene nanoribbons (GNRs) with armchair edges and zigzag termini that have five carbon atoms across their width (5-AGNRs), as synthesized on Au(111). Scanning tunneling spectroscopy measurements on the ribbons, recorded on both the metallic substrate and a decoupling NaCl layer, show well-defined dispersive bands and in-gap states. In combination with theoretical calculations, we show how these in-gap states are topological in nature and localized at the zigzag termini of the nanoribbons. In addition to rationalizing the driving force behind the topological class selection of 5-AGNRs, we also uncover the length-dependent behavior of these end states which transition from singly occupied spin-split states to a closed-shell form as the ribbons become shorter. Finally, we demonstrate the magnetic character of the end states via transport experiments in a model two-terminal device structure in which the ribbons are suspended between the scanning probe and the substrate that both act as leads.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA