Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373461

RESUMO

Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted. Considering the most recent use in the field of biosensors, tethered lipid bilayers, drug delivery, wound dressing, skin regeneration, targeted chemotherapy and imaging/diagnostics, functionalized NMs and NPs have become one of the main pillars of modern biomedical applications.


Assuntos
Implantes Absorvíveis , Nanopartículas , Humanos , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Polímeros
2.
Bioelectrochemistry ; 159: 108757, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38851026

RESUMO

The utilization of biomimetic membranes supported by advanced self-assembled monolayers is gaining attraction as a promising sensing tool. Biomimetic membranes offer exceptional biocompatibility and adsorption capacity upon degradation, transcending their role as mere research instruments to open new avenues in biosensing. This study focused on anchoring a sparsely tethered bilayer lipid membrane onto a self-assembled monolayer composed of a biodegradable polymer, functionalized with poly(ethylene glycol)-cholesterol moieties, for lipid membrane integration. Real-time monitoring via quartz crystal microbalance, coupled with characterization using surface-enhanced infrared absorption spectroscopy and electrochemical impedance spectroscopy, provided comprehensive insights into each manufacturing phase. The resulting lipid layer, along with transmembrane pores formed by gramicidin A, exhibited robust stability. Electrochemical impedance spectroscopy analysis confirmed membrane integrity, successful pore formation, and consistent channel density. Notably, gramicidin A demonstrated sustained functionality as an ion channel upon reconstitution, with its functionality being effectively blocked and inhibited in the presence of calcium ions. These findings mark significant strides in developing intricate biodegradable nanomaterials with promising applications in biomedicine.


Assuntos
Gramicidina , Bicamadas Lipídicas , Poliésteres , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Gramicidina/química , Gramicidina/metabolismo , Poliésteres/química , Colesterol/química , Técnicas de Microbalança de Cristal de Quartzo , Polietilenoglicóis/química , Materiais Biocompatíveis/química , Espectroscopia Dielétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA