RESUMO
BACKGROUND: Sildenafil is a phosphodiesterase inhibitor used clinically for treating erectile dysfunction. Few studies suggest sildenafil to be a renoprotective agent. The present study investigated the involvement of peroxisome proliferator-activated receptor γ (PPAR-γ) in sildenafil-mediated protection against ischemia-reperfusion-induced acute kidney injury (AKI) in rats. MATERIALS AND METHODS: The rats were subjected to ischemia-reperfusion injury (IRI) with 40 min of bilateral renal ischemia followed by reperfusion for 24 h. The renal damage was assessed by measuring creatinine clearance, blood urea nitrogen, plasma uric acid, electrolytes, and microproteinuria in rats. The thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels were measured to assess oxidative stress in renal tissues. The hematoxylin-eosin staining was carried out to demonstrate histopathologic changes in renal tissues. Sildenafil (0.5 and 1.0 mg/kg, intraperitoneal) was administered 1 h before subjecting the rats to renal IRI. In a separate group, bisphenol A diglycidyl ether (30 mg/kg, intraperitoneal), a PPAR-γ receptor antagonist, was given before sildenafil administration followed by IRI. RESULTS: The ischemia-reperfusion demonstrated marked AKI with significant changes in serum and urinary parameters, enhanced oxidative stress, and histopathologic changes in renal tissues. The administration of sildenafil demonstrated significant protection against ischemia-reperfusion-induced AKI. The prior treatment with bisphenol A diglycidyl ether abolished sildenafil-mediated renal protection, thereby confirming involvement of PPAR-γ agonism in the sildenafil-mediated renoprotective effect. CONCLUSIONS: It is concluded that sildenafil protects against ischemia-reperfusion-induced AKI through PPAR-γ agonism in rats.
Assuntos
Injúria Renal Aguda/prevenção & controle , PPAR gama/agonistas , Inibidores da Fosfodiesterase 5/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Citrato de Sildenafila/uso terapêutico , Injúria Renal Aguda/patologia , Animais , Compostos Benzidrílicos , Avaliação Pré-Clínica de Medicamentos , Compostos de Epóxi , Rim/patologia , Testes de Função Renal , Masculino , Estresse Oxidativo , Inibidores da Fosfodiesterase 5/farmacologia , Proteinúria/prevenção & controle , Distribuição Aleatória , Ratos Wistar , Traumatismo por Reperfusão/patologia , Citrato de Sildenafila/farmacologiaRESUMO
Dipyridamole (DYP) is an anti-platelet agent with marked vasodilator, anti-oxidant, and anti-inflammatory activity. The present study investigated the role of adenosine receptors in DYP-mediated protection against ischemia reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h. The renal damage induced by ischemia reperfusion injury (IRI) was assessed by measuring creatinine clearance, blood urea nitrogen, uric acid, plasma potassium, fractional excretion of sodium, and microproteinuria in rats. The oxidative stress in renal tissues was assessed by quantification of thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The hematoxylin-eosin staining was carried out to observe histopathological changes in renal tissues. DYP (10 and 30 mg/kg, intraperitoneal, i.p.) was administered 30 min before subjecting the rats to renal IRI. In separate groups, caffeine (50 mg/kg, i.p.), an adenosinergic A1 and A2A receptor antagonist was administered with and without DYP treatment before subjecting the rats to renal IRI. The ischemia reperfusion-induced AKI was demonstrated by significant changes in serum as well as urinary parameters, enhanced oxidative stress, and histopathological changes in renal tissues. The administration of DYP demonstrated protection against AKI. The prior treatment with caffeine abolished DYP-mediated reno-protection suggesting role of A1 and A2A adenosine receptors in DYP-mediated reno-protection in rats. It is concluded that adenosine receptors find their definite involvement in DYP-mediated anti-oxidative and reno-protective effect against ischemia reperfusion-induced AKI.