Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1419-1431, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634280

RESUMO

BACKGROUND: Epigenetic age estimators (clocks) are predictive of human mortality risk. However, it is not yet known whether the epigenetic age of atherosclerotic plaques is predictive for the risk of cardiovascular events. METHODS: Whole-genome DNA methylation of human carotid atherosclerotic plaques (n=485) and of blood (n=93) from the Athero-Express endarterectomy cohort was used to calculate epigenetic age acceleration (EAA). EAA was linked to clinical characteristics, plaque histology, and future cardiovascular events (n=136). We studied whole-genome DNA methylation and bulk and single-cell transcriptomics to uncover molecular mechanisms of plaque EAA. We experimentally confirmed our in silico findings using in vitro experiments in primary human coronary endothelial cells. RESULTS: Male and female patients with severe atherosclerosis had a median chronological age of 69 years. The median epigenetic age was 65 years in females (median EAA, -2.2 [interquartile range, -4.3 to 2.2] years) and 68 years in males (median EAA, -0.3 [interquartile range, -2.9 to 3.8] years). Patients with diabetes and a high body mass index had higher plaque EAA. Increased EAA of plaque predicted future events in a 3-year follow-up in a Cox regression model (univariate hazard ratio, 1.7; P=0.0034) and adjusted multivariate model (hazard ratio, 1.56; P=0.02). Plaque EAA predicted outcome independent of blood EAA (hazard ratio, 1.3; P=0.018) and of plaque hemorrhage (hazard ratio, 1.7; P=0.02). Single-cell RNA sequencing in plaque samples from 46 patients in the same cohort revealed smooth muscle and endothelial cells as important cell types in plaque EAA. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally confirmed by TGFß-triggered endothelial-to-mesenchymal transition inducing rapid epigenetic aging in coronary endothelial cells. CONCLUSIONS: Plaque EAA is a strong and independent marker of poor outcome in patients with severe atherosclerosis. Plaque EAA was linked to mesenchymal endothelial and smooth muscle cells. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally validated. Epigenetic aging mechanisms may provide new targets for treatments that reduce atherosclerosis complications.


Assuntos
Metilação de DNA , Células Endoteliais , Epigênese Genética , Placa Aterosclerótica , Humanos , Masculino , Feminino , Idoso , Prognóstico , Pessoa de Meia-Idade , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Fatores Etários , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/cirurgia , Células Cultivadas , Fatores de Risco , Medição de Risco
2.
Arterioscler Thromb Vasc Biol ; 44(3): 720-740, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38269588

RESUMO

BACKGROUND: Oxidized phospholipids play a key role in the atherogenic potential of lipoprotein(a) (Lp[a]); however, Lp(a) is a complex particle that warrants research into additional proinflammatory mediators. We hypothesized that additional Lp(a)-associated lipids contribute to the atherogenicity of Lp(a). METHODS: Untargeted lipidomics was performed on plasma and isolated lipoprotein fractions. The atherogenicity of the observed Lp(a)-associated lipids was tested ex vivo in primary human monocytes by RNA sequencing, ELISA, Western blot, and transendothelial migratory assays. Using immunofluorescence staining and single-cell RNA sequencing, the phenotype of macrophages was investigated in human atherosclerotic lesions. RESULTS: Compared with healthy individuals with low/normal Lp(a) levels (median, 7 mg/dL [18 nmol/L]; n=13), individuals with elevated Lp(a) levels (median, 87 mg/dL [218 nmol/L]; n=12) demonstrated an increase in lipid species, particularly diacylglycerols (DGs) and lysophosphatidic acid (LPA). DG and the LPA precursor lysophosphatidylcholine were enriched in the Lp(a) fraction. Ex vivo stimulation with DG(40:6) demonstrated a significant upregulation in proinflammatory pathways related to leukocyte migration, chemotaxis, NF-κB (nuclear factor kappa B) signaling, and cytokine production. Functional assessment showed a dose-dependent increase in the secretion of IL (interleukin)-6, IL-8, and IL-1ß after DG(40:6) and DG(38:4) stimulation, which was, in part, mediated via the NLRP3 (NOD [nucleotide-binding oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome. Conversely, LPA-stimulated monocytes did not exhibit an inflammatory phenotype. Furthermore, activation of monocytes by DGs and LPA increased their transendothelial migratory capacity. Human atherosclerotic plaques from patients with high Lp(a) levels demonstrated colocalization of Lp(a) with M1 macrophages, and an enrichment of CD68+IL-18+TLR4+ (toll-like receptor) TREM2+ (triggering receptor expressed on myeloid cells) resident macrophages and CD68+CASP1+ (caspase) IL-1B+SELL+ (selectin L) inflammatory macrophages compared with patients with low Lp(a). Finally, potent Lp(a)-lowering treatment (pelacarsen) resulted in a reduction in specific circulating DG lipid subspecies in patients with cardiovascular disease with elevated Lp(a) levels (median, 82 mg/dL [205 nmol/L]). CONCLUSIONS: Lp(a)-associated DGs and LPA have a potential role in Lp(a)-induced monocyte inflammation by increasing cytokine secretion and monocyte transendothelial migration. This DG-induced inflammation is, in part, NLRP3 inflammasome dependent.


Assuntos
Lisofosfolipídeos , Monócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Diglicerídeos/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipoproteína(a)/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 43(10): 1836-1850, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589136

RESUMO

BACKGROUND: Women presenting with coronary artery disease more often present with fibrous atherosclerotic plaques, which are currently understudied. Phenotypically modulated smooth muscle cells (SMCs) contribute to atherosclerosis in women. How these phenotypically modulated SMCs shape female versus male plaques is unknown. METHODS: Gene regulatory networks were created using RNAseq gene expression data from human carotid atherosclerotic plaques. The networks were prioritized based on sex bias, relevance for smooth muscle biology, and coronary artery disease genetic enrichment. Network expression was linked to histologically determined plaque phenotypes. In addition, their expression in plaque cell types was studied at single-cell resolution using single-cell RNAseq. Finally, their relevance for disease progression was studied in female and male Apoe-/- mice fed a Western diet for 18 and 30 weeks. RESULTS: Here, we identify multiple sex-stratified gene regulatory networks from human carotid atherosclerotic plaques. Prioritization of the female networks identified 2 main SMC gene regulatory networks in late-stage atherosclerosis. Single-cell RNA sequencing mapped these female networks to 2 SMC phenotypes: a phenotypically modulated myofibroblast-like SMC network and a contractile SMC network. The myofibroblast-like network was mostly expressed in plaques that were vulnerable in women. Finally, the mice ortholog of key driver gene MFGE8 (milk fat globule EGF and factor V/VIII domain containing) showed retained expression in advanced plaques from female mice but was downregulated in male mice during atherosclerosis progression. CONCLUSIONS: Female atherosclerosis is characterized by gene regulatory networks that are active in fibrous vulnerable plaques rich in myofibroblast-like SMCs.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Feminino , Masculino , Humanos , Camundongos , Animais , Placa Aterosclerótica/patologia , Redes Reguladoras de Genes , Miofibroblastos/metabolismo , Doença da Artéria Coronariana/patologia , Aterosclerose/patologia , Miócitos de Músculo Liso/metabolismo
4.
PLoS One ; 19(5): e0302830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722842

RESUMO

INTRODUCTION: The risk of major bleeding complications in catheter directed thrombolysis (CDT) for acute limb ischemia (ALI) remains high, with reported major bleeding complication rates in up to 1 in every 10 treated patients. Fibrinogen was the only predictive marker used for bleeding complications in CDT, despite the lack of high quality evidence to support this. Therefore, recent international guidelines recommend against the use of fibrinogen during CDT. However, no alternative biomarkers exist to effectively predict CDT-related bleeding complications. The aim of the POCHET biobank is to prospectively assess the rate and etiology of bleeding complications during CDT and to provide a biobank of blood samples to investigate potential novel biomarkers to predict bleeding complications during CDT. METHODS: The POCHET biobank is a multicentre prospective biobank. After informed consent, all consecutive patients with lower extremity ALI eligible for CDT are included. All patients are treated according to a predefined standard operating procedure which is aligned in all participating centres. Baseline and follow-up data are collected. Prior to CDT and subsequently every six hours, venous blood samples are obtained and stored in the biobank for future analyses. The primary outcome is the occurrence of non-access related major bleeding complications, which is assessed by an independent adjudication committee. Secondary outcomes are non-major bleeding complications and other CDT related complications. Proposed biomarkers to be investigated include fibrinogen, to end the debate on its usefulness, anti-plasmin and D-Dimer. DISCUSSION AND CONCLUSION: The POCHET biobank provides contemporary data and outcomes of patients during CDT for ALI, coupled with their blood samples taken prior and during CDT. Thereby, the POCHET biobank is a real world monitor on biomarkers during CDT, supporting a broad spectrum of future research for the identification of patients at high risk for bleeding complications during CDT and to identify new biomarkers to enhance safety in CDT treatment.


Assuntos
Hemorragia , Terapia Trombolítica , Humanos , Hemorragia/etiologia , Terapia Trombolítica/efeitos adversos , Terapia Trombolítica/métodos , Estudos Prospectivos , Biomarcadores/sangue , Masculino , Feminino , Fibrinogênio/metabolismo , Fibrinogênio/análise , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/sangue , Idoso , Arteriopatias Oclusivas/tratamento farmacológico , Arteriopatias Oclusivas/sangue , Pessoa de Meia-Idade
5.
Biol Sex Differ ; 14(1): 43, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408072

RESUMO

BACKGROUND AND AIM: Sex differences in atherosclerosis have been described with female plaques being mostly perceived as stable and fibrous. Sex-specific mechanisms such as mosaic loss of the Y chromosome in men have been linked to cardiovascular health. In women, X-linked mechanisms such as X chromosome inactivation (XCI) skewing is common in several tissues. Yet, information on the role of XCI in female atherosclerotic plaques is lacking. Here, we investigated the presence of XCI skewing in advanced atherosclerotic lesions and its association with cardiovascular risk factors, histological plaque data, and clinical data. METHODS: XCI skewing was quantified in 154 atherosclerotic plaque and 55 blood DNA samples of women included in the Athero-Express study. The skewing status was determined performing the HUMARA assay. Then, we studied the relationship of XCI skewing in female plaque and cardiovascular risk factors using regression models. In addition, we studied if plaque XCI predicted plaque composition, and adverse events during 3-years follow-up using Cox proportional hazard models. RESULTS: XCI skewing was detected in 76 of 154 (49.4%) plaques and in 27 of 55 (67%) blood samples. None of the clinical risk factors were associated with plaque skewing. Plaque skewing was more often detected in plaques with a plaque hemorrhage (OR [95% CI]: 1.44 [1.06-1.98], P = 0.02). Moreover, skewed plaques were not associated with a higher incidence of composite and major events but were specifically associated with peripheral artery events during a 3-year follow-up period in a multivariate model (HR [95%CI]: 1.46 [1.09-1.97]; P = 0.007). CONCLUSIONS: XCI skewing is common in carotid plaques of females and is predictive for the occurrence of peripheral artery events within 3 years after carotid endarterectomy.


Sex-differences have been observed in the development of atherosclerosis between men and women. Women tend to have more stable and fibrous plaques compared to men. Sex-specific mechanisms such as mosaic loss of the Y chromosome in men, were associated with cardiovascular health. In women, despite X-linked mechanisms like X chromosome inactivation (XCI) skewing was identified in various tissues. However, its relationship with atherosclerosis has not yet been investigated. In our study, we explored if prevalence of XCI skewing in advanced atherosclerotic lesions related to cardiovascular risk factors, histological plaque data, and clinical information. We found that XCI skewing was present in approximately 50% of human plaques, particularly those with plaque hemorrhage. Interestingly, we did not find any notable relationship between plaque skewing and clinical risk factors. However, we found that XCI was more present in women with peripheral artery events during the 3 years period following carotid endarterectomy. In summary, our findings indicate that XCI skewing is commonly observed in carotid plaques among females and may serve as a predictive factor for the occurrence of peripheral artery events within 3 years after carotid endarterectomy.


Assuntos
Aterosclerose , Placa Aterosclerótica , Feminino , Humanos , Masculino , Inativação do Cromossomo X , Cromossomos Humanos Y , Mosaicismo , Placa Aterosclerótica/patologia , Artérias/patologia
6.
J Am Heart Assoc ; 12(21): e030243, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37889192

RESUMO

Background Plaque myofibroblasts are critical players in the initiation and advancement of atherosclerotic disease. They are involved in the production of extracellular matrix, the formation of the fibrous cap, and the underlying lipidic core via modulation processes in response to different environmental cues. Despite clear phenotypic differences between myofibroblast cells and healthy vascular smooth muscle cells, smooth muscle cells are still widely used as a cellular model in atherosclerotic research. Methods and Results Here, we present a conditioned outgrowth method to isolate and culture myofibroblast cells from plaques. We obtained these cells from 27 donors (24 carotid and 3 femoral endarterectomies). We show that they keep their proliferative capacity for 8 passages, are transcriptionally stable, retain donor-specific gene expression programs, and express extracellular matrix proteins (FN1, COL1A1, and DCN) and smooth muscle cell markers (ACTA2, MYH11, and CNN1). Single-cell transcriptomics reveals that the cells in culture closely resemble the plaque myofibroblasts. Chromatin immunoprecipitation sequencing shows the presence of histone H3 lysine 4 dimethylation at the MYH11 promoter, pointing to their smooth muscle cell origin. Finally, we demonstrated that plaque myofibroblasts can be efficiently transduced (>97%) and are capable of taking up oxidized low-density lipoprotein and undergoing calcification. Conclusions In conclusion, we present a method to isolate and culture cells that retain plaque myofibroblast phenotypical and functional capabilities, making them a suitable in vitro model for studying selected mechanisms of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Miofibroblastos/metabolismo , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Artérias Carótidas/metabolismo , Miócitos de Músculo Liso/metabolismo
7.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873248

RESUMO

Atherosclerosis is a chronic inflammatory disease which is driven in part by the aberrant trans -differentiation of vascular smooth muscle cells (SMCs). No therapeutic drug has been shown to reverse detrimental SMC-derived cell phenotypes into protective phenotypes, a hypothesized enabler of plaque regression and improved patient outcome. Herein, we describe a novel function of colchicine in the beneficial modulation of SMC-derived cell phenotype, independent of its conventional anti-inflammatory effects. Using SMC fate mapping in an advanced atherosclerotic lesion model, colchicine induced plaque regression by converting pathogenic SMC-derived macrophage-like and osteoblast-like cells into protective myofibroblast-like cells which thickened, and thereby stabilized, the fibrous cap. This was dependent on Notch3 signaling in SMC-derived plaque cells. These findings may help explain the success of colchicine in clinical trials relative to other anti-inflammatory drugs. Thus, we demonstrate the potential of regulating SMC phenotype in advanced plaque regression through Notch3 signaling, in addition to the canonical anti-inflammatory actions of drugs to treat atherosclerosis.

8.
BMJ Open ; 13(2): e066952, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806141

RESUMO

PURPOSE: The Utrecht Cardiovascular Cohort-Second Manifestations of Arterial Disease (UCC-SMART) Study is an ongoing prospective single-centre cohort study with the aim to assess important determinants and the prognosis of cardiovascular disease progression. This article provides an update of the rationale, design, included patients, measurements and findings from the start in 1996 to date. PARTICIPANTS: The UCC-SMART Study includes patients aged 18-90 years referred to the University Medical Center Utrecht, the Netherlands, for management of cardiovascular disease (CVD) or severe cardiovascular risk factors. Since September 1996, a total of 14 830 patients have been included. Upon inclusion, patients undergo a standardised screening programme, including questionnaires, vital signs, laboratory measurements, an ECG, vascular ultrasound of carotid arteries and aorta, ankle-brachial index and ultrasound measurements of adipose tissue, kidney size and intima-media thickness. Outcomes of interest are collected through annual questionnaires and adjudicated by an endpoint committee. FINDINGS TO DATE: By May 2022, the included patients contributed to a total follow-up time of over 134 000 person-years. During follow-up, 2259 patients suffered a vascular endpoint (including non-fatal myocardial infarction, non-fatal stroke and vascular death) and 2794 all-cause deaths, 943 incident cases of diabetes and 2139 incident cases of cancer were observed up until January 2020. The UCC-SMART cohort contributed to over 350 articles published in peer-reviewed journals, including prediction models recommended by the 2021 European Society of Cardiology CVD prevention guidelines. FUTURE PLANS: The UCC-SMART Study guarantees an infrastructure for research in patients at high cardiovascular risk. The cohort will continue to include about 600 patients yearly and follow-up will be ongoing to ensure an up-to-date cohort in accordance with current healthcare and scientific knowledge. In the near future, UCC-SMART will be enriched by echocardiography, and a food frequency questionnaire at baseline enabling the assessment of associations between nutrition and CVD and diabetes.


Assuntos
Doenças Cardiovasculares , Acidente Vascular Cerebral , Humanos , Doenças Cardiovasculares/epidemiologia , Estudos Prospectivos , Países Baixos/epidemiologia , Espessura Intima-Media Carotídea , Estudos de Coortes , Fatores de Risco , Aorta
9.
bioRxiv ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36798294

RESUMO

Women presenting with coronary artery disease (CAD) more often present with fibrous atherosclerotic plaques, which are currently understudied. Phenotypically modulated smooth muscle cells (SMCs) contribute to atherosclerosis in women. How these phenotypically modulated SMCs shape female versus male plaques is unknown. Here, we show sex-stratified gene regulatory networks (GRNs) from human carotid atherosclerotic tissue. Prioritization of these networks identified two main SMC GRNs in late-stage atherosclerosis. Single-cell RNA-sequencing mapped these GRNs to two SMC phenotypes: a phenotypically modulated myofibroblast-like SMC network and a contractile SMC network. The myofibroblast-like GRN was mostly expressed in plaques that were vulnerable in females. Finally, mice orthologs of the female myofibroblast-like genes showed retained expression in advanced plaques from female mice but were downregulated in male mice during atherosclerosis progression. Female atherosclerosis is driven by GRNs that promote a fibrous vulnerable plaque rich in myofibroblast-like SMCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA