Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(11): e111901, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917141

RESUMO

Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over-expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type-specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet ß-cells exposed to fatty acids, and survival of FAO-dependent lymphoma subtypes. We find that fragmentation increases long-chain but not short-chain FAO, identifying carnitine O-palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl-CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl-CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.


Assuntos
Ácidos Graxos , Malonil Coenzima A , Ácidos Graxos/metabolismo , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Oxirredução , Mitocôndrias/metabolismo
2.
FASEB J ; 36(2): e22146, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35073429

RESUMO

Mitochondria are maternally inherited organelles that play critical tissue-specific roles, including hormone synthesis and energy production, that influence human development, health, and aging. However, whether mitochondria from women and men exhibit consistent biological differences remains unclear, representing a major gap in knowledge. This meta-analysis systematically examined four domains and six subdomains of mitochondrial biology (total 39 measures), including mitochondrial content, respiratory capacity, reactive oxygen species (ROS) production, morphometry, and mitochondrial DNA copy number. Standardized effect sizes (Hedge's g) of sex differences were computed for each measure using data in 2258 participants (51.5% women) from 50 studies. Only two measures demonstrated aggregate binary sex differences: higher mitochondrial content in women's WAT and isolated leukocyte subpopulations (g = 0.20, χ2 p = .01), and higher ROS production in men's skeletal muscle (g = 0.49, χ2 p < .0001). Sex differences showed weak to no correlation with age or BMI. Studies with small sample sizes tended to overestimate effect sizes (r = -.17, p < .001), and sex differences varied by tissue examined. Our findings point to a wide variability of findings in the literature concerning possible binary sex differences in mitochondrial biology. Studies specifically designed to capture sex- and gender-related differences in mitochondrial biology are needed, including detailed considerations of physical activity and sex hormones.


Assuntos
Mitocôndrias/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Biologia/métodos , DNA Mitocondrial/metabolismo , DNA Mitocondrial/fisiologia , Feminino , Humanos , Leucócitos/metabolismo , Leucócitos/fisiologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Caracteres Sexuais
3.
Alzheimers Dement ; 19(4): 1466-1478, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35870133

RESUMO

INTRODUCTION: Despite evidence for systemic mitochondrial dysfunction early in Alzheimer's disease (AD) pathogenesis, reliable approaches monitoring these key bioenergetic alterations are lacking. We used peripheral blood mononuclear cells (PBMCs) and platelets as reporters of mitochondrial function in the context of cognitive impairment and AD. METHODS: Mitochondrial function was analyzed using complementary respirometric approaches in intact and permeabilized cells from older adults with normal cognition, mild cognitive impairment (MCI), and dementia due to probable AD. Clinical outcomes included measures of cognitive function and brain morphology. RESULTS: PBMC and platelet bioenergetic parameters were lowest in dementia participants. MCI platelets exhibited higher maximal respiration than normocognitives. PBMC and platelet respiration positively associated with cognitive ability and hippocampal volume, and negatively associated with white matter hyperintensities. DISCUSSION: Our findings indicate blood-based bioenergetic profiling can be used as a minimally invasive approach for measuring systemic bioenergetic differences associated with dementia, and may be used to monitor bioenergetic changes associated with AD risk and progression. HIGHLIGHTS: Peripheral cell bioenergetic alterations accompanied cognitive decline in older adults with mild cognitive impairment (MCI) and Alzheimer's disease (AD) and related dementia (DEM). Peripheral blood mononuclear cells (PBMC) and platelet glucose-mediated respiration decreased in participants with dementia compared to normocognitive controls (NC). PBMC fatty-acid oxidation (FAO)-mediated respiration progressively declined in MCI and AD compared to NC participants, while platelet FAO-mediated respiration exhibited an inverse-Warburg effect in MCI compared to NC participants. Positive associations were observed between bioenergetics and Modified Preclinical Alzheimer's Cognitive Composite, and bioenergetics and hippocampal volume %, while a negative association was observed between bioenergetics and white matter hyperintensities. Systemic mitochondrial dysfunction is associated with cognitive decline.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/patologia , Leucócitos Mononucleares/patologia , Mitocôndrias , Metabolismo Energético , Cognição , Disfunção Cognitiva/patologia
4.
Am J Physiol Endocrinol Metab ; 321(5): E652-E664, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34569271

RESUMO

Mitochondrial dysfunction is evident in diseases affecting cognition and metabolism such as Alzheimer's disease and type 2 diabetes. Human studies of brain mitochondrial function are limited to postmortem tissue, preventing the assessment of bioenergetics by respirometry. Here, we investigated the effect of two diets on mitochondrial bioenergetics in three brain regions: the prefrontal cortex (PFC), the entorhinal cortex (ERC), and the cerebellum (CB), using middle-aged nonhuman primates. Eighteen female cynomolgus macaques aged 12.3 ± 0.7 yr were fed either a Mediterranean diet that is associated with healthy outcomes or a Western diet that is associated with poor cognitive and metabolic outcomes. Average bioenergetic capacity within each brain region did not differ between diets. Distinct brain regions have different metabolic requirements related to their function and disease susceptibility. Therefore, we also examined differences in bioenergetic capacity between brain regions. Mitochondria isolated from animals fed a Mediterranean diet maintained distinct differences in mitochondrial bioenergetics between brain regions, whereas animals fed the Western diet had diminished distinction in bioenergetics between brain regions. Notably, fatty acid ß-oxidation was not affected between regions in animals fed a Western diet. In addition, bioenergetics in animals fed a Western diet had positive associations with fasting blood glucose and insulin levels in PFC and ERC mitochondria but not in CB mitochondria. Altogether, these data indicate that a Western diet disrupts bioenergetic patterns across brain regions and that circulating blood glucose and insulin levels in Western-diet fed animals influence bioenergetics in brain regions susceptible to Alzheimer's disease and type 2 diabetes.NEW & NOTEWORTHY We show that compared with cynomolgus macaques fed a Mediterranean diet, a Western diet resulted in diminished bioenergetic pattern between brain regions related to blood glucose and insulin levels, specifically in brain regions susceptible to neurodegeneration and diabetes. In addition, fatty acid metabolism not directly linked to the TCA cycle and glucose metabolism did not show differences in bioenergetics due to diet.


Assuntos
Encéfalo/metabolismo , Dieta Mediterrânea , Dieta Ocidental , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Animais , Glicemia/análise , Glicemia/metabolismo , Citrato (si)-Sintase/metabolismo , Transtornos Cognitivos/etiologia , Córtex Entorrinal/embriologia , Ácidos Graxos/metabolismo , Feminino , Insulina/sangue , Macaca fascicularis , Córtex Pré-Frontal/metabolismo
5.
Am J Nephrol ; 51(9): 695-704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32866949

RESUMO

BACKGROUND: Apolipoprotein L1 gene (APOL1) G1 and G2 kidney-risk variants (KRVs) cause CKD in African Americans, inducing mitochondrial dysfunction. Modifying factors are required, because a minority of individuals with APOL1 high-risk genotypes develop nephropathy. Given that APOL1 function is pH-sensitive and the pH of the kidney interstitium is <7, we hypothesized the acidic kidney interstitium may facilitate APOL1 KRV-induced mitochondrial dysfunction. METHODS: Human embryonic kidney (HEK293) cells conditionally expressing empty vector (EV), APOL1-reference G0, and G1 or G2 KRVs were incubated in media pH 6.8 or 7.4 for 4, 6, or 8 h. Genotype-specific pH effects on mitochondrial length (µm) were assessed using confocal microscopy in live cells and Fiji derivative of ImageJ software with MiNA plug-in. Lower mitochondrial length indicated fragmentation and early dysfunction. RESULTS: After 6 h doxycycline (Dox) induction in pH 6.8 media, G2-expressing cells had shorter mitochondria (6.54 ± 0.40) than cells expressing EV (7.65 ± 0.72, p = 0.02) or G0 (7.46 ± 0.31, p = 0.003). After 8 h Dox induction in pH 6.8 media, both G1- (6.21 ± 0.26) and G2-expressing cells had shorter mitochondria (6.46 ± 0.34) than cells expressing EV (7.13 ± 0.32, p = 0.002 and p = 0.008, respectively) or G0 (7.22 ± 0.45, p = 0.003 and p = 0.01, respectively). Mitochondrial length in cells incubated in pH 7.4 media were comparable after 8 h Dox induction regardless of genotype. APOL1 mRNA expression and cell viability were comparable regardless of pH or genotype after 8 h Dox induction. CONCLUSION: Acidic pH facilitates early mitochondrial dysfunction induced by APOL1 G1 and G2 KRVs in HEK293 cells. We propose that the acidic kidney interstitium may play a role in APOL1-mediated mitochondrial pathophysiology and nephropathy.


Assuntos
Apolipoproteína L1/metabolismo , Predisposição Genética para Doença , Rim/patologia , Mitocôndrias/patologia , Insuficiência Renal Crônica/genética , Negro ou Afro-Americano/genética , Apolipoproteína L1/genética , Meios de Cultura/química , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Rim/química , Rim/citologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Insuficiência Renal Crônica/patologia
6.
J Nutr ; 149(9): 1493-1502, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31112997

RESUMO

BACKGROUND: Western diets are associated with increased incidences of obesity, hypertension, diabetes, and hypercholesterolemia, whereas Mediterranean diets, richer in polyphenols, monounsaturated fats, fruits, vegetables, poultry, and fish, appear to have cardiometabolic health benefits. Previous work has included population-based studies with limited evidence for causation or animal studies focused on single macro- or micronutrients; therefore, primate animal models provide an opportunity to determine potential mechanisms underlying the effects of dietary patterns on health and disease. OBJECTIVE: The aim of this study was to determine the effects of whole dietary patterns, either a Western or Mediterranean diet, on skeletal muscle mitochondrial bioenergetics in cynomolgus macaques. METHODS: In this study, 22 adult female cynomolgus macaques (∼11-14 y by dentition) were fed either a Western or Mediterranean diet for 30 mo. The Western diet was designed to mimic the diet of a middle-aged American woman and the Mediterranean diet included key aspects of Mediterranean diets studied in humans, such as plant-based proteins and fat, complex carbohydrates, and fiber. Diets were matched on macronutrient composition (16% protein, 54% carbohydrate, and 31% fat) and cholesterol content. Skeletal muscle was collected for high-resolution respirometry, citrate synthase activity, and western blot measurements. Pearson correlation analysis between respirometry measures and measures of carbohydrate metabolism was also performed. RESULTS: We found that consumption of a Western diet resulted in significantly higher mitochondrial respiration with fatty acid oxidation (FAO) (53%), FAO + complex I (52%), complex I + II (31%), max electron transport system (ETS) (31%), and ETS rotenone sensitive (31%) than did consumption of a Mediterranean diet. In addition, measures of respiration in response to fatty acids were significantly and positively correlated with both insulin resistance and plasma insulin concentrations. CONCLUSIONS: This study highlights the importance of dietary composition in mitochondrial bioenergetics and that diet can influence skeletal muscle mitochondrial respiration independently of other factors such as macronutrient composition.


Assuntos
Dieta Mediterrânea , Dieta Ocidental , Metabolismo Energético , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Glicemia/análise , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Feminino , Insulina/sangue , Resistência à Insulina , Macaca fascicularis
7.
Clin Sci (Lond) ; 132(23): 2509-2518, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30401689

RESUMO

Blood-based bioenergetic profiling has promising applications as a minimally invasive biomarker of systemic bioenergetic capacity. In the present study, we examined peripheral blood mononuclear cell (PBMC) mitochondrial function and brain morphology in a cohort of African Americans with long-standing Type 2 diabetes. Key parameters of PBMC respiration were correlated with white matter, gray matter, and total intracranial volumes. Our analyses indicate that these relationships are primarily driven by the relationship of systemic bioenergetic capacity with total intracranial volume, suggesting that systemic differences in mitochondrial function may play a role in overall brain morphology.


Assuntos
Negro ou Afro-Americano , Encéfalo/diagnóstico por imagem , Complicações do Diabetes/sangue , Diabetes Mellitus Tipo 2/sangue , Metabolismo Energético , Leucócitos Mononucleares/metabolismo , Imageamento por Ressonância Magnética , Mitocôndrias/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos Transversais , Complicações do Diabetes/diagnóstico por imagem , Complicações do Diabetes/etnologia , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/etnologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes
8.
J Am Soc Nephrol ; 28(4): 1093-1105, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27821631

RESUMO

APOL1 G1 and G2 variants facilitate kidney disease in blacks. To elucidate the pathways whereby these variants contribute to disease pathogenesis, we established HEK293 cell lines stably expressing doxycycline-inducible (Tet-on) reference APOL1 G0 or the G1 and G2 renal-risk variants, and used Illumina human HT-12 v4 arrays and Affymetrix HTA 2.0 arrays to generate global gene expression data with doxycycline induction. Significantly altered pathways identified through bioinformatics analyses involved mitochondrial function; results from immunoblotting, immunofluorescence, and functional assays validated these findings. Overexpression of APOL1 by doxycycline induction in HEK293 Tet-on G1 and G2 cells led to impaired mitochondrial function, with markedly reduced maximum respiration rate, reserve respiration capacity, and mitochondrial membrane potential. Impaired mitochondrial function occurred before intracellular potassium depletion or reduced cell viability occurred. Analysis of global gene expression profiles in nondiseased primary proximal tubule cells from black patients revealed that the nicotinate phosphoribosyltransferase gene, responsible for NAD biosynthesis, was among the top downregulated transcripts in cells with two APOL1 renal-risk variants compared with those without renal-risk variants; nicotinate phosphoribosyltransferase also displayed gene expression patterns linked to mitochondrial dysfunction in HEK293 Tet-on APOL1 cell pathway analyses. These results suggest a pivotal role for mitochondrial dysfunction in APOL1-associated kidney disease.


Assuntos
Apolipoproteínas/genética , Nefropatias/genética , Lipoproteínas HDL/genética , Doenças Mitocondriais/genética , Apolipoproteína L1 , População Negra , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
9.
Geroscience ; 46(1): 349-365, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37368157

RESUMO

Mitochondrial improvements resulting from behavioral interventions, such as diet and exercise, are systemic and apparent across multiple tissues. Here, we test the hypothesis that factors present in serum, and therefore circulating throughout the body, can mediate changes in mitochondrial function in response to intervention. To investigate this, we used stored serum from a clinical trial comparing resistance training (RT) and RT plus caloric restriction (RT + CR) to examine effects of blood borne circulating factors on myoblasts in vitro. We report that exposure to dilute serum is sufficient to mediate bioenergetic benefits of these interventions. Additionally, serum-mediated bioenergetic changes can differentiate between interventions, recapitulate sex differences in bioenergetic responses, and is linked to improvements in physical function and inflammation. Using metabolomics, we identified circulating factors associated with changes in mitochondrial bioenergetics and the effects of interventions. This study provides new evidence that circulating factors play a role in the beneficial effects of interventions that improve healthspan among older adults. Understanding the factors that drive improvements in mitochondrial function is a key step towards predicting intervention outcomes and developing strategies to countermand systemic age-related bioenergetic decline.


Assuntos
Dieta , Mitocôndrias , Humanos , Masculino , Feminino , Mitocôndrias/metabolismo , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Terapia por Exercício
10.
Artigo em Inglês | MEDLINE | ID: mdl-38602189

RESUMO

Blood-based mitochondrial bioenergetic profiling is a feasible, economical, and minimally invasive approach that can be used to examine mitochondrial function and energy metabolism in human subjects. In this study, we use 2 complementary respirometric techniques to evaluate mitochondrial bioenergetics in both intact and permeabilized peripheral blood mononuclear cells (PBMCs) and platelets to examine sex dimorphism in mitochondrial function among older adults. Employing equal numbers of PBMCs and platelets to assess mitochondrial bioenergetics, we observe significantly higher respiration rates in female compared to male participants. Mitochondrial bioenergetic differences remain significant after controlling for independent parameters including demographic parameters (age, years of education), and cognitive parameters (mPACC5, COGDX). Our study illustrates that circulating blood cells, immune cells in particular, have distinctly different mitochondrial bioenergetic profiles between females and males. These differences should be taken into account as blood-based bioenergetic profiling is now commonly used to understand the role of mitochondrial bioenergetics in human health and aging.


Assuntos
Metabolismo Energético , Leucócitos Mononucleares , Mitocôndrias , Humanos , Masculino , Feminino , Mitocôndrias/metabolismo , Idoso , Metabolismo Energético/fisiologia , Leucócitos Mononucleares/metabolismo , Plaquetas/metabolismo , Envelhecimento/fisiologia , Fatores Sexuais , Caracteres Sexuais , Idoso de 80 Anos ou mais
11.
BMJ Open ; 14(6): e082659, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925692

RESUMO

INTRODUCTION: While it is well recognised that aging is a heterogeneous process, our understanding of the determinants of biological aging and its heterogeneity remains unclear. The San Diego Nathan Shock Center (SD-NSC) Clinical Cohort aims to establish a resource of biospecimens and extensive donor clinical data such as physical, cognitive and sensory function to support other studies that aim to explore the heterogeneity of normal human aging and its biological underpinnings. METHODS AND ANALYSIS: The SD-NSC Clinical Cohort is composed of 80 individuals across the adult human lifespan. Strict inclusion and exclusion criteria are implemented to minimise extrinsic factors that may impede the study of normal aging. Across three visits, participants undergo extensive phenotyping for collection of physical performance, body composition, cognitive function, sensory ability, mental health and haematological data. During these visits, we also collected biospecimens including plasma, platelets, peripheral blood mononuclear cells and fibroblasts for banking and future studies on aging. ETHICS AND DISSEMINATION: Ethics approval from the UC San Diego School of Medicine Institutional Review Board (IRB #201 141 SHOCK Center Clinical Cohort, PI: Molina) was obtained on 11 November 2020. Written informed consent is obtained from all participants after objectives and procedures of the study have been fully explained. Congruent with the goal of establishing a core resource, biological samples and clinical data are made available to the research community through the SD-NSC.


Assuntos
Envelhecimento , Humanos , Envelhecimento/fisiologia , Masculino , Feminino , Adulto , Estudos de Coortes , Idoso , Pessoa de Meia-Idade , California , Cognição , Bancos de Espécimes Biológicos , Composição Corporal
12.
Aging Cell ; 23(2): e14038, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37961856

RESUMO

Calorie restriction (CR) with adequate nutrient intake is a potential geroprotective intervention. To advance this concept in humans, we tested the hypothesis that moderate CR in healthy young-to-middle-aged individuals would reduce circulating biomarkers of cellular senescence, a fundamental mechanism of aging and aging-related conditions. Using plasma specimens from the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE™) phase 2 study, we found that CR significantly reduced the concentrations of several senescence biomarkers at 12 and 24 months compared to an ad libitum diet. Using machine learning, changes in biomarker concentrations emerged as important predictors of the change in HOMA-IR and insulin sensitivity index at 12 and 24 months, and the change in resting metabolic rate residual at 12 months. Finally, using adipose tissue RNA-sequencing data from a subset of participants, we observed a significant reduction in a senescence-focused gene set in response to CR at both 12 and 24 months compared to baseline. Our results advance the understanding of the effects of CR in humans and further support a link between cellular senescence and metabolic health.


Assuntos
Envelhecimento , Restrição Calórica , Pessoa de Meia-Idade , Humanos , Senescência Celular/genética , Ingestão de Energia , Biomarcadores
13.
Artigo em Inglês | MEDLINE | ID: mdl-38605684

RESUMO

BACKGROUND: The geroscience hypothesis posits that aging biological processes contribute to many age-related deficits, including the accumulation of multiple chronic diseases. Though only one facet of mitochondrial function, declines in muscle mitochondrial bioenergetic capacities may contribute to this increased susceptibility to multimorbidity. METHODS: The Study of Muscle, Mobility and Aging (SOMMA) assessed ex vivo muscle mitochondrial energetics in 764 older adults (mean age = 76.4, 56.5% women, and 85.9% non-Hispanic White) by high-resolution respirometry of permeabilized muscle fibers. We estimated the proportional odds ratio (POR [95% CI]) for the likelihood of greater multimorbidity (4 levels: 0 conditions, N = 332; 1 condition, N = 299; 2 conditions, N = 98; or 3+ conditions, N = 35) from an index of 11 conditions, per SD decrement in muscle mitochondrial energetic parameters. Distribution of conditions allowed for testing the associations of maximal muscle energetics with some individual conditions. RESULTS: Lower oxidative phosphorylation supported by fatty acids and/or complex I- and II-linked carbohydrates (eg, Max OXPHOSCI+CII) was associated with a greater multimorbidity index score (POR = 1.32 [1.13, 1.54]) and separately with diabetes mellitus (OR = 1.62 [1.26, 2.09]), depressive symptoms (OR = 1.45 [1.04, 2.00]) and possibly chronic kidney disease (OR = 1.57 [0.98, 2.52]) but not significantly with other conditions (eg, cardiac arrhythmia, chronic obstructive pulmonary disease). CONCLUSIONS: Lower muscle mitochondrial bioenergetic capacities were associated with a worse composite multimorbidity index score. Our results suggest that decrements in muscle mitochondrial energetics may contribute to a greater global burden of disease and are more strongly related to some conditions than others.


Assuntos
Envelhecimento , Metabolismo Energético , Mitocôndrias Musculares , Multimorbidade , Humanos , Feminino , Idoso , Masculino , Metabolismo Energético/fisiologia , Mitocôndrias Musculares/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Idoso de 80 Anos ou mais , Músculo Esquelético/metabolismo
14.
Sci Adv ; 10(10): eadj6411, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446898

RESUMO

Social stress experienced in childhood is associated with adverse health later in life. Mitochondrial function has been implicated as a mechanism for how stressful life events "get under the skin" to influence physical well-being. Using data from the Study of Muscle, Mobility, and Aging (n = 879, 59% women), linear models examined whether adverse childhood events (i.e., physical abuse) were associated with two measures of skeletal muscle mitochondrial energetics in older adults: (i) maximal adenosine triphosphate production (ATPmax) and (ii) maximal state 3 respiration (Max OXPHOS). Forty-five percent of the sample reported experiencing one or more adverse childhood events. After adjustment, each additional event was associated with -0.08 SD (95% confidence interval = -0.13, -0.02) lower ATPmax. No association was observed with Max OXPHOS. Adverse childhood events are associated with lower ATP production in later life. Findings indicate that mitochondrial function may be a mechanism for understanding how early social stress influences health in later life.


Assuntos
Músculo Esquelético , Fenômenos Fisiológicos Musculoesqueléticos , Feminino , Humanos , Idoso , Masculino , Trifosfato de Adenosina , Envelhecimento , Mitocôndrias
15.
Artigo em Inglês | MEDLINE | ID: mdl-38150179

RESUMO

The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery (SPPB) score ≤8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (eg, Maximal Complex I&II OXPHOS: Women = 55.06 ± 15.95; Men = 65.80 ± 19.74; p < .001) and in individuals with mobility impairment compared to those without (eg, Maximal Complex I&II OXPHOS in women: SPPB ≥ 9 = 56.59 ± 16.22; SPPB ≤ 8 = 47.37 ± 11.85; p < .001). Muscle energetics were negatively associated with age only in men (eg, Maximal ETS capacity: R = -0.15, p = .02; age/sex interaction, p = .04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, odds ratio [OR]age-adjusted = 1.78, 95% confidence interval [CI] = 1.03, 3.08, p = .038; 80+ age group, ORage-adjusted = 1.05, 95% CI = 0.52, 2.15, p = .89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.


Assuntos
Envelhecimento , Músculo Esquelético , Masculino , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Músculo Quadríceps , Extremidade Inferior
16.
medRxiv ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38853946

RESUMO

Greater perceived physical fatigability and lower skeletal muscle energetics are predictors of mobility decline. Characterizing associations between muscle energetics and perceived fatigability may provide insight into potential targets to prevent mobility decline. We examined associations of in vivo (maximal ATP production, ATPmax) and ex vivo (maximal carbohydrate supported oxidative phosphorylation [max OXPHOS] and maximal fatty acid supported OXPHOS [max FAO OXPHOS]) measures of mitochondrial energetics with two measures of perceived physical fatigability, Pittsburgh Fatigability Scale (PFS, 0-50, higher=greater) and Rating of Perceived Exertion (RPE Fatigability, 6-20, higher=greater) after a slow treadmill walk. Participants from the Study of Muscle, Mobility and Aging (N=873) were 76.3±5.0 years old, 59.2% women, and 85.3% White. Higher muscle energetics (both in vivo and ex vivo ) were associated with lower perceived physical fatigability, all p<0.03. When stratified by sex, higher ATPmax was associated with lower PFS Physical for men only; higher max OXPHOS and max FAO OXPHOS were associated with lower RPE fatigability for both sexes. Higher skeletal muscle energetics were associated with 40-55% lower odds of being in the most (PFS≥25, RPE Fatigability≥12) vs least (PFS 0-4, RPE Fatigability 6-7) severe fatigability strata, all p<0.03. Being a woman was associated with 2-3 times higher odds of being in the most severe fatigability strata when controlling for ATPmax but not the in vivo measures (p<0.05). Better mitochondrial energetics were linked to lower fatigability and less severe fatigability in older adults. Findings imply that improving skeletal muscle energetics may mitigate perceived physical fatigability and prolong healthy aging.

17.
Obesity (Silver Spring) ; 32(6): 1125-1135, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38803308

RESUMO

OBJECTIVE: The aim of this study was to examine associations of ectopic adipose tissue (AT) with skeletal muscle (SM) mitochondrial bioenergetics in older adults. METHODS: Cross-sectional data from 829 adults ≥70 years of age were used. Abdominal, subcutaneous, and visceral AT and thigh muscle fat infiltration (MFI) were quantified by magnetic resonance imaging. SM mitochondrial energetics were characterized in vivo (31P-magnetic resonance spectroscopy; ATPmax) and ex vivo (high-resolution respirometry maximal oxidative phosphorylation [OXPHOS]). ActivPal was used to measure physical activity ([PA]; step count). Linear regression adjusted for covariates was applied, with sequential adjustment for BMI and PA. RESULTS: Independent of BMI, total abdominal AT (standardized [Std.] ß = -0.21; R2 = 0.09) and visceral AT (Std. ß = -0.16; R2 = 0.09) were associated with ATPmax (p < 0.01; n = 770) but not following adjustment for PA (p ≥ 0.05; n = 658). Visceral AT (Std. ß = -0.16; R2 = 0.25) and thigh MFI (Std. ß = -0.11; R2 = 0.24) were associated with carbohydrate-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 609). Total abdominal AT (Std. ß = -0.19; R2 = 0.24) and visceral AT (Std. ß = -0.17; R2 = 0.24) were associated with fatty acid-supported maximal OXPHOS independent of BMI and PA (p < 0.05; n = 447). CONCLUSIONS: Skeletal MFI and abdominal visceral, but not subcutaneous, AT are inversely associated with SM mitochondrial bioenergetics in older adults independent of BMI. Associations between ectopic AT and in vivo mitochondrial bioenergetics are attenuated by PA.


Assuntos
Índice de Massa Corporal , Metabolismo Energético , Músculo Esquelético , Humanos , Feminino , Idoso , Masculino , Metabolismo Energético/fisiologia , Estudos Transversais , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Imageamento por Ressonância Magnética , Tecido Adiposo/metabolismo , Distribuição da Gordura Corporal , Mitocôndrias Musculares/metabolismo , Gordura Intra-Abdominal/metabolismo , Idoso de 80 Anos ou mais
18.
J Gerontol A Biol Sci Med Sci ; 78(12): 2187-2202, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37738628

RESUMO

Alzheimer's disease (AD) is a progressive, age-related neurodegenerative disorder that affects a large proportion of the older population. It currently lacks effective treatments, placing a heavy burden on patients, families, health care systems, and society. This is mainly due to our limited comprehension of the pathophysiology of AD progression, as well as the lack of effective drug targets and intervention timing to address the underlying pathology. AD is a multifactorial condition, and emerging evidence suggests that abnormalities in the gut microbiota play a significant role as environmental and multifaceted contributors to AD, although the exact mechanisms are yet to be fully explored. Changes in the composition of microbiota influence host neuronal health through their metabolites. These metabolites regulate intestinal epithelia, blood-brain barrier permeability, and neuroinflammation by affecting mitochondrial function. The decline in the proportion of beneficial microbes and their essential metabolites during aging and AD is directly linked to poor mitochondrial function, although the specific mechanisms remain unclear. In this review, we discuss recent developments in understanding the impact of the microbiome and its metabolites on various cell types, their influence on the integrity of the gut and blood-brain barriers, systemic and brain inflammation, and cell-specific effects in AD pathology. This information is expected to pave the way for a new understanding of the interactions between microbiota and mitochondria in AD, providing a foundation for the development of novel treatments for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Microbiota , Humanos , Mitocôndrias , Degeneração Neural , Encéfalo
19.
Neurosci Biobehav Rev ; 152: 105320, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37453725

RESUMO

Social disadvantage and diet composition independently impact myriad dimensions of health. They are closely entwined, as social disadvantage often yields poor diet quality, and may interact to fuel differential health outcomes. This paper reviews effects of psychosocial stress and diet composition on health in nonhuman primates and their implications for aging and human health. We examined the effects of social subordination stress and Mediterranean versus Western diet on multiple systems. We report that psychosocial stress and Western diet have independent and additive adverse effects on hypothalamic-pituitary-adrenal and autonomic nervous system reactivity to psychological stressors, brain structure, and ovarian function. Compared to the Mediterranean diet, the Western diet resulted in accelerated aging, nonalcoholic fatty liver disease, insulin resistance, gut microbial changes associated with increased disease risk, neuroinflammation, neuroanatomical perturbations, anxiety, and social isolation. This comprehensive, multisystem investigation lays the foundation for future investigations of the mechanistic underpinnings of psychosocial stress and diet effects on health, and advances the promise of the Mediterranean diet as a therapeutic intervention on psychosocial stress.


Assuntos
Dieta Mediterrânea , Primatas , Animais , Humanos , Estresse Psicológico , Ansiedade , Isolamento Social
20.
Circ Heart Fail ; 16(2): e010161, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36314122

RESUMO

BACKGROUND: We have shown that combined caloric restriction (CR) and aerobic exercise training (AT) improve peak exercise O2 consumption (VO2peak), and quality-of-life in older patients with obese heart failure with preserved ejection fraction. However, ≈35% of weight lost during CR+AT was skeletal muscle mass. We examined whether addition of resistance training (RT) to CR+AT would reduce skeletal muscle loss and further improve outcomes. METHODS: This study is a randomized, controlled, single-blind, 20-week trial of RT+CR+AT versus CR+AT in 88 patients with chronic heart failure with preserved ejection fraction and body mass index (BMI) ≥28 kg/m2. Outcomes at 20 weeks included the primary outcome (VO2peak); MRI and dual X-ray absorptiometry; leg muscle strength and quality (leg strength ÷ leg skeletal muscle area); and Kansas City Cardiomyopathy Questionnaire. RESULTS: Seventy-seven participants completed the trial. RT+CR+AT and CR+AT produced nonsignificant differences in weight loss: mean (95% CI): -8 (-9, -7) versus -9 (-11, -8; P=0.21). RT+CR+AT and CR+AT had non-significantly differences in the reduction of body fat [-6.5 (-7.2, -5.8) versus -7.4 (-8.1, -6.7) kg] and skeletal muscle [-2.1 (-2.7, -1.5) versus -2.1 (-2.7, -1.4) kg] (P=0.20 and 0.23, respectively). RT+CR+AT produced significantly greater increases in leg muscle strength [4.9 (0.7, 9.0) versus -1.1 (-5.5, 3.2) Nm, P=0.05] and leg muscle quality [0.07 (0.03, 0.11) versus 0.02 (-0.02, 0.06) Nm/cm2, P=0.04]. Both RT+CR+AT and CR+AT produced significant improvements in VO2peak [108 (958, 157) versus 80 (30, 130) mL/min; P=0.001 and 0.002, respectively], and Kansas City Cardiomyopathy Questionnaire score [17 (12, 22) versus 23 (17, 28); P=0.001 for both], with no significant between-group differences. Both RT+CR+AT and CR+AT significantly reduced LV mass and arterial stiffness. There were no study-related serious adverse events. CONCLUSIONS: In older obese heart failure with preserved ejection fraction patients, CR+AT produces large improvements in VO2peak and quality-of-life. Adding RT to CR+AT increased leg strength and muscle quality without attenuating skeletal muscle loss or further increasing VO2peak or quality-of-life. REGISTRATION: URL: https://ClincalTrials.gov; Unique identifier: NCT02636439.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Treinamento Resistido , Humanos , Idoso , Volume Sistólico/fisiologia , Restrição Calórica , Método Simples-Cego , Obesidade , Exercício Físico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA