Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931561

RESUMO

Breast cancer is the second most common cancer worldwide, primarily affecting women, while histopathological image analysis is one of the possibile methods used to determine tumor malignancy. Regarding image analysis, the application of deep learning has become increasingly prevalent in recent years. However, a significant issue is the unbalanced nature of available datasets, with some classes having more images than others, which may impact the performance of the models due to poorer generalizability. A possible strategy to avoid this problem is downsampling the class with the most images to create a balanced dataset. Nevertheless, this approach is not recommended for small datasets as it can lead to poor model performance. Instead, techniques such as data augmentation are traditionally used to address this issue. These techniques apply simple transformations such as translation or rotation to the images to increase variability in the dataset. Another possibility is using generative adversarial networks (GANs), which can generate images from a relatively small training set. This work aims to enhance model performance in classifying histopathological images by applying data augmentation using GANs instead of traditional techniques.


Assuntos
Neoplasias da Mama , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo , Feminino , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos
2.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339537

RESUMO

The application of deep learning to image and video processing has become increasingly popular nowadays. Employing well-known pre-trained neural networks for detecting and classifying objects in images is beneficial in a wide range of application fields. However, diverse impediments may degrade the performance achieved by those neural networks. Particularly, Gaussian noise and brightness, among others, may be presented on images as sensor noise due to the limitations of image acquisition devices. In this work, we study the effect of the most representative noise types and brightness alterations on images in the performance of several state-of-the-art object detectors, such as YOLO or Faster-RCNN. Different experiments have been carried out and the results demonstrate how these adversities deteriorate their performance. Moreover, it is found that the size of objects to be detected is a factor that, together with noise and brightness factors, has a considerable impact on their performance.

3.
Appl Soft Comput ; 111: 107692, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34276263

RESUMO

A key factor in the fight against viral diseases such as the coronavirus (COVID-19) is the identification of virus carriers as early and quickly as possible, in a cheap and efficient manner. The application of deep learning for image classification of chest X-ray images of COVID-19 patients could become a useful pre-diagnostic detection methodology. However, deep learning architectures require large labelled datasets. This is often a limitation when the subject of research is relatively new as in the case of the virus outbreak, where dealing with small labelled datasets is a challenge. Moreover, in such context, the datasets are also highly imbalanced, with few observations from positive cases of the new disease. In this work we evaluate the performance of the semi-supervised deep learning architecture known as MixMatch with a very limited number of labelled observations and highly imbalanced labelled datasets. We demonstrate the critical impact of data imbalance to the model's accuracy. Therefore, we propose a simple approach for correcting data imbalance, by re-weighting each observation in the loss function, giving a higher weight to the observations corresponding to the under-represented class. For unlabelled observations, we use the pseudo and augmented labels calculated by MixMatch to choose the appropriate weight. The proposed method improved classification accuracy by up to 18%, with respect to the non balanced MixMatch algorithm. We tested our proposed approach with several available datasets using 10, 15 and 20 labelled observations, for binary classification (COVID-19 positive and normal cases). For multi-class classification (COVID-19 positive, pneumonia and normal cases), we tested 30, 50, 70 and 90 labelled observations. Additionally, a new dataset is included among the tested datasets, composed of chest X-ray images of Costa Rican adult patients.

4.
IEEE Access ; 9: 85442-85454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812397

RESUMO

In this work we implement a COVID-19 infection detection system based on chest X-ray images with uncertainty estimation. Uncertainty estimation is vital for safe usage of computer aided diagnosis tools in medical applications. Model estimations with high uncertainty should be carefully analyzed by a trained radiologist. We aim to improve uncertainty estimations using unlabelled data through the MixMatch semi-supervised framework. We test popular uncertainty estimation approaches, comprising Softmax scores, Monte-Carlo dropout and deterministic uncertainty quantification. To compare the reliability of the uncertainty estimates, we propose the usage of the Jensen-Shannon distance between the uncertainty distributions of correct and incorrect estimations. This metric is statistically relevant, unlike most previously used metrics, which often ignore the distribution of the uncertainty estimations. Our test results show a significant improvement in uncertainty estimates when using unlabelled data. The best results are obtained with the use of the Monte Carlo dropout method.

5.
Int J Neural Syst ; 28(5): 1750056, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29297263

RESUMO

One of the most important challenges in computer vision applications is the background modeling, especially when the background is dynamic and the input distribution might not be stationary, i.e. the distribution of the input data could change with time (e.g. changing illuminations, waving trees, water, etc.). In this work, an unsupervised learning neural network is proposed which is able to cope with progressive changes in the input distribution. It is based on a dual learning mechanism which manages the changes of the input distribution separately from the cluster detection. The proposal is adequate for scenes where the background varies slowly. The performance of the method is tested against several state-of-the-art foreground detectors both quantitatively and qualitatively, with favorable results.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Humanos , Reconhecimento Automatizado de Padrão/métodos , Aprendizado de Máquina não Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA