RESUMO
PURPOSE: The increasing importance of molecular markers for classification and prognostication of diffuse gliomas has prompted the use of imaging features to predict genotype ("radiogenomics"). CDKN2A/B homozygous deletion has only recently been added to the diagnostic paradigm for IDH[isocitrate dehydrogenase]-mutant astrocytomas; thus, associated radiogenomic literature is sparse. There is also little data on whether different IDH mutations are associated with different imaging appearances. Furthermore, given that molecular status is now generally obtained routinely, the additional prognostic value of radiogenomic features is less clear. This study correlated MRI features with CDKN2A/B status, IDH mutation type and survival in histological grade 2-3 IDH-mutant brain astrocytomas. METHODS: Fifty-eight grade 2-3 IDH-mutant astrocytomas were identified, 50 with CDKN2A/B results. IDH mutations were stratified into IDH1-R132H and non-canonical mutations. Background and survival data were obtained. Two neuroradiologists independently assessed the following MRI features: T2-FLAIR mismatch (<25%, 25-50%, >50%), well-defined tumour margins, contrast-enhancement (absent, wispy, solid) and central necrosis. RESULTS: 8/50 tumours with CDKN2A/B results demonstrated homozygous deletion; slightly shorter survival was not significant (p=0.571). IDH1-R132H mutations were present in 50/58 (86%). No MRI features correlated with CDKN2A/B status or IDH mutation type. T2-FLAIR mismatch did not predict survival (p=0.977), but well-defined margins predicted longer survival (HR 0.36, p=0.008), while solid enhancement predicted shorter survival (HR 3.86, p=0.004). Both correlations remained significant on multivariate analysis. CONCLUSION: MRI features did not predict CDKN2A/B homozygous deletion, but provided additional positive and negative prognostic information which correlated more strongly with prognosis than CDKN2A/B status in our cohort.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Marcadores Genéticos , Homozigoto , Deleção de Sequência , Mutação , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Isocitrato Desidrogenase/genéticaRESUMO
BACKGROUND AND PURPOSE: IDH-mutant gliomas are further divided on the basis of 1p/19q status: oligodendroglioma, IDH-mutant and 1p/19q-codeleted, and astrocytoma, IDH-mutant (without codeletion). Occasionally, testing may reveal single-arm 1p or 19q deletion (unideletion), which remains within the diagnosis of astrocytoma. Molecular assessment has some limitations, however, raising the possibility that some unideleted tumors could actually be codeleted. This study assessed whether unideleted tumors had MR imaging features and survival more consistent with astrocytomas or oligodendrogliomas. MATERIALS AND METHODS: One hundred twenty-one IDH-mutant grade 2-3 gliomas with 1p/19q results were identified. Two neuroradiologists assessed the T2-FLAIR mismatch sign and calcifications, as differentiators of astrocytomas and oligodendrogliomas. MR imaging features and survival were compared among the unideleted tumors, codeleted tumors, and those without 1p or 19q deletion. RESULTS: The cohort comprised 65 tumors without 1p or 19q deletion, 12 unideleted tumors, and 44 codeleted. The proportion of unideleted tumors demonstrating the T2-FLAIR mismatch sign (33%) was similar to that in tumors without deletion (49%; P = .39), but significantly higher than codeleted tumors (0%; P = .001). Calcifications were less frequent in unideleted tumors (0%) than in codeleted tumors (25%), but this difference did not reach statistical significance (P = .097). The median survival of patients with unideleted tumors was 7.8 years, which was similar to that in tumors without deletion (8.5 years; P = .72) but significantly shorter than that in codeleted tumors (not reaching median survival after 12 years; P = .013). CONCLUSIONS: IDH-mutant gliomas with single-arm 1p or 19q deletion have MR imaging appearance and survival that are similar to those of astrocytomas without 1p or 19q deletion and significantly different from those of 1p/19q-codeleted oligodendrogliomas.