Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36679758

RESUMO

The two photon absorption-transient current technique (TPA-TCT) was used to investigate a silicon strip detector with illumination from the top. Measurement and analysis techniques for the TPA-TCT of segmented devices are presented and discussed using a passive strip CMOS detector and a standard strip detector as an example. The influence of laser beam clipping and reflection is shown, and a method that allows to compensate these intensity-related effects for investigation of the electric field is introduced and successfully employed. Additionally, the mirror technique is introduced, which exploits reflection at a metallised back side to enable the measurement directly below a top metallisation while illuminating from the top.


Assuntos
Fótons , Radiometria , Radiometria/métodos , Método de Monte Carlo , Imagens de Fantasmas , Silício
2.
Appl Opt ; 61(32): 9386-9397, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36606897

RESUMO

A fiber laser system emitting ultrashort femtosecond pulses at 1550 nm with configurable properties has been developed as an excitation source for the two-photon absorption transient current technique (TPA-TCT). The modules of the system are designed to provide the optical specifications required at the output for localized characterization of semiconductor radiation detectors: variation of pulse energy between 10 nJ and 10p J, variation of the pulse repetition rate from 8.2 MHz to single shot, and variation of pulse duration between 300 and 600 fs. The validity of the system as an excitation source in the TPA-TCT is demonstrated by measuring spatially resolved excited charge carriers in a silicon detector.

3.
Clin Infect Dis ; 73(Suppl 1): S45-S53, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33977295

RESUMO

BACKGROUND: High-frequency, rapid-turnaround severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing continues to be proposed as a way of efficiently identifying and mitigating transmission in congregate settings. However, 2 SARS-CoV-2 outbreaks occurred among intercollegiate university athletic programs during the fall 2020 semester, despite mandatory directly observed daily antigen testing. METHODS: During the fall 2020 semester, athletes and staff in both programs were tested daily using Quidel's Sofia SARS Antigen Fluorescent Immunoassay, with positive antigen results requiring confirmatory testing with real-time reverse-transcription polymerase chain reaction. We used genomic sequencing to investigate transmission dynamics in these 2 outbreaks. RESULTS: In the first outbreak, 32 confirmed cases occurred within a university athletics program after the index patient attended a meeting while infectious, despite a negative antigen test on the day of the meeting. Among isolates sequenced from that outbreak, 24 (92%) of 26 were closely related, suggesting sustained transmission following an initial introduction event. In the second outbreak, 12 confirmed cases occurred among athletes from 2 university programs that faced each other in an athletic competition, despite receipt of negative antigen test results on the day of the competition. Sequences from both teams were closely related and distinct from viruses circulating in the community for team 1, suggesting transmission during intercollegiate competition in the community for team 2. CONCLUSIONS: These findings suggest that antigen testing alone, even when mandated and directly observed, may not be sufficient as an intervention to prevent SARS-CoV-2 outbreaks in congregate settings, and they highlight the importance of vaccination to prevent SARS-CoV-2 outbreak in congregate settings.


Assuntos
COVID-19 , Esportes , Humanos , Testes Imunológicos , SARS-CoV-2 , Universidades
4.
Sci Rep ; 14(1): 4837, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418657

RESUMO

The EOS™2D/3D system is a low-dose, 3D imaging system that utilizes two perpendicular X-ray beams to create simultaneous frontal and lateral images of the body. This is a useful modality to assess spinal pathologies. However, due to the slow imaging acquisition time up to 25 s, motion artifacts (MA) frequently occur. These artifacts may not be distinguishable from pathological findings, such as scoliosis, and may impair the diagnostic process. The aim of this study was to design a method to detect MA in EOS X-ray. We retrospectively analyzed EOS imaging from 40 patients wearing a radiopaque reference device during imaging. We drew a straight vertical line along the reference device. We measured deviations from it to quantify MA, presenting these findings through descriptive statistics. For a subset of patients with high MA, acquisitions were repeated after giving specific instructions to stand still. For these patients, we compared MA between the two acquisitions. In our study, a substantial proportion of patients exhibited MA ≥ 1 mm, with 80% in frontal projections and 87.9% in lateral projections. In the subjects who received a second acquisition, MA was significantly lower in the second images. Our method allows for a precise detection of MA on EOS images through a simple, yet reliable solution. Our method may improve the reliability of spine measurements, and reduce the risk of wrong diagnosis due to low imaging quality.


Assuntos
Artefatos , Imageamento Tridimensional , Humanos , Raios X , Estudos Retrospectivos , Reprodutibilidade dos Testes , Radiografia , Imageamento Tridimensional/métodos
5.
medRxiv ; 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33688665

RESUMO

BACKGROUND: High frequency, rapid turnaround SARS-CoV-2 testing continues to be proposed as a way of efficiently identifying and mitigating transmission in congregate settings. However, two SARS-CoV-2 outbreaks occurred among intercollegiate university athletic programs during the fall 2020 semester despite mandatory directly observed daily antigen testing. METHODS: During the fall 2020 semester, athletes and staff in both programs were tested daily using Quidel's Sofia SARS Antigen Fluorescent Immunoassay (FIA), with positive antigen results requiring confirmatory testing with real-time reverse transcription polymerase chain reaction (RT-PCR). We used genomic sequencing to investigate transmission dynamics in these two outbreaks. RESULTS: In Outbreak 1, 32 confirmed cases occurred within a university athletics program after the index patient attended a meeting while infectious despite a negative antigen test on the day of the meeting. Among isolates sequenced from Outbreak 1, 24 (92%) of 26 were closely related, suggesting sustained transmission following an initial introduction event. In Outbreak 2, 12 confirmed cases occurred among athletes from two university programs that faced each other in an athletic competition despite receiving negative antigen test results on the day of the competition. Sequences from both teams were closely related and unique from strains circulating in the community, suggesting transmission during intercollegiate competition. CONCLUSIONS: These findings suggest that antigen testing alone, even when mandated and directly observed, may not be sufficient as an intervention to prevent SARS-CoV-2 outbreaks in congregate settings, and highlights the importance of supplementing serial antigen testing with appropriate mitigation strategies to prevent SARS-CoV-2 outbreak in congregate settings. SUMMARY: High frequency, rapid turnaround SARS-CoV-2 testing continues to be proposed as a way of efficiently identifying and mitigating transmission in congregate settings. However, here we describe two SARS-CoV-2 outbreaks occurred among intercollegiate university athletic programs during the fall 2020 semester.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA