Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int Urogynecol J ; 27(2): 291-300, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353846

RESUMO

INTRODUCTION AND HYPOTHESIS: We evaluated the potential role of human mesenchymal stem cells (hMSCs) in improvement of urinary continence following birth-trauma injury. METHODS: Human MSCs were injected periurethrally or systemically into rats immediately after vaginal distention (VD) (n = 90). Control groups were non-VD (uninjured/untreated, n = 15), local or systemic saline (injection/control, n = 90), and dermofibroblast (cell therapy/control, n = 90). Leak-point pressure (LPP) was measured 4, 10, and 14 days later. Urethras were morphometrically evaluated. In another sets of VD and non-VD rats, the fate of periurethrally injected hMSC, biodistribution, and in vivo viability was studied using human Alu genomic repeat staining, PKH26 labeling, and luciferase-expression labeling, respectively. RESULTS: Saline- and dermofibroblast-treated control rats demonstrated lower LPP than non-VD controls at days 4 and 14 (P < 0.01). LPP after systemic hMSC and periurethral hMSC treatment were comparable with non-VD controls at 4, 10, and 14 days (P > 0.05). Local saline controls demonstrated extensive urethral tissue bleeding. The connective tissue area/urethral section area proportion and vascular density were higher in the local hMSC- versus the saline-treated group at 4 and 14 days, respectively. No positive Alu-stained nuclei were observed in urethras at 4, 10, and 14 days. PKH26-labelled cells were found in all urethras at 2 and 24 h. Bioluminescence study showed increased luciferase expression from day 0 to 1 following hMSC injection. CONCLUSIONS: Human MSCs restored the continence mechanism with an immediate and sustained effect in the VD model, while saline and dermofibroblast therapy did not. Human MSCs remained at the site of periurethral injection for <7 days. We hypothesize that periurethral hMSC treatment improves vascular, connective tissue, and hemorrhage status of urethral tissues after acute VD injury.


Assuntos
Transplante de Células-Tronco Mesenquimais , Parto , Uretra/patologia , Incontinência Urinária/fisiopatologia , Incontinência Urinária/terapia , Animais , Rastreamento de Células , Modelos Animais de Doenças , Feminino , Humanos , Células-Tronco Mesenquimais/fisiologia , Pressão , Ratos , Ratos Sprague-Dawley , Uretra/lesões , Incontinência Urinária/etiologia
2.
Neuroimage ; 102 Pt 2: 809-16, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25213753

RESUMO

Dystrophin, the main component of the dystrophin-glycoprotein complex, plays an important role in maintaining the structural integrity of cells. It is also involved in the formation of the blood-brain barrier (BBB). To elucidate the impact of dystrophin disruption in vivo, we characterized changes in cerebral perfusion and diffusion in dystrophin-deficient mice (mdx) by magnetic resonance imaging (MRI). Arterial spin labeling (ASL) and diffusion-weighted MRI (DWI) studies were performed on 2-month-old and 10-month-old mdx mice and their age-matched wild-type controls (WT). The imaging results were correlated with Evan's blue extravasation and vascular density studies. The results show that dystrophin disruption significantly decreased the mean cerebral diffusivity in both 2-month-old (7.38 ± 0.30 × 10(-4)mm(2)/s) and 10-month-old (6.93 ± 0.53 × 10(-4)mm(2)/s) mdx mice as compared to WT (8.49 ± 0.24 × 10(-4), 8.24 ± 0.25 × 10(-4)mm(2)/s, respectively). There was also an 18% decrease in cerebral perfusion in 10-month-old mdx mice as compared to WT, which was associated with enhanced arteriogenesis. The reduction in water diffusivity in mdx mice is likely due to an increase in cerebral edema or the existence of large molecules in the extracellular space from a leaky BBB. The observation of decreased perfusion in the setting of enhanced arteriogenesis may be caused by an increase of intracranial pressure from cerebral edema. This study demonstrates the defects in water handling at the BBB and consequently, abnormal perfusion associated with the absence of dystrophin.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Circulação Cerebrovascular/fisiologia , Distrofina/deficiência , Animais , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Inorg Chem ; 53(19): 10189-94, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25283335

RESUMO

A unique decelerated hydrolytic procedure is developed and reported here for the preparation of ultrasmall nanoparticles (NPs) of PVP-coated BiOI with a narrow size distribution, i.e., 2.8 ± 0.5 nm. The crystal structure of this compound is determined by X-ray powder diffraction using the bulk materials. The stability, cytotoxicity, and potential use of the PVP-coated ultrasmall BiOI NPs as a CT contrast agent are investigated. Because of the combined X-ray attenuation effect of bismuth and iodine, such NPs exhibit a CT value that is among the best of those of the inorganic nanoparticle-based CT contrast agents reported in the literature.


Assuntos
Bismuto/farmacologia , Meios de Contraste/farmacologia , Iodetos/farmacologia , Nanopartículas/química , Tomografia Computadorizada por Raios X , Bismuto/química , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/síntese química , Meios de Contraste/química , Células HeLa , Humanos , Iodetos/síntese química , Iodetos/química , Tamanho da Partícula , Polivinil/química , Difração de Pó , Solubilidade , Propriedades de Superfície
4.
J Hepatol ; 55(1): 96-102, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21354236

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is frequently a lethal disease and one of the few malignancies that is still increasing in incidence around the world. Better animal models are highly desired to investigate the molecular basis of HCC and to develop novel therapeutic strategies. Alpha-fetoprotein (Afp) gene is expressed in fetal liver, silenced soon after birth, and highly re-expressed in hepatocellular carcinomas (HCC). We aimed to take advantage of the dramatic re-expression of the Afp gene in HCC to develop a hepatocarcinogenesis reporter (HCR) mouse model for dual-modality, longitudinal in vivo imaging of liver tumor development, and progression. METHODS: Knock in mice were established by placing a thymidinekinase (tk)-luciferase (luc) reporter gene cassette under the transcriptional control of the endogenous Afp promoter. DEN, a liver carcinogen, was used to induce liver tumors, which was monitored by both luc-based bioluminescent (BL) and tk-based positron emission tomography (PET) imaging. RESULTS: The expression profile of luc was identical to that of the endogenous Afp gene during development. As early as 2 months after the exposure to DEN, BLI revealed multifocal signals in the liver, long before the appearance of histologically apparent neoplastic lesions. By 6 months, BL and PET dual imaging showed strong signals in malignant HCC. By serendipity, a strong BL signal was also detected in adult testes, a previously unknown site of Afp expression. CONCLUSIONS: The HCR model enables longitudinal monitoring of liver tumor development and progression, providing a powerful tool in developing chemoprevention and therapeutic strategies for HCC.


Assuntos
Neoplasias Hepáticas Experimentais/etiologia , Luciferases/genética , Timidina Quinase/genética , alfa-Fetoproteínas/genética , Animais , Dietilnitrosamina/toxicidade , Modelos Animais de Doenças , Progressão da Doença , Feminino , Técnicas de Introdução de Genes , Genes Reporter , Humanos , Neoplasias Hepáticas Experimentais/diagnóstico por imagem , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Luminescência , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons , Lesões Pré-Cancerosas/diagnóstico por imagem , Lesões Pré-Cancerosas/etiologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia
5.
Mol Ther ; 17(4): 641-50, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19223866

RESUMO

This study demonstrates proof of concept for delivery and expression of compacted plasmid DNA in the central nervous system. Plasmid DNA was compacted with polyethylene glycol substituted lysine 30-mer peptides, forming rod-like nanoparticles with diameters between 8 and 11 nm. Here we show that an intracerebral injection of compacted DNA can transfect both neurons and glia, and can produce transgene expression in the striatum for up to 8 weeks, which was at least 100-fold greater than intracerebral injections of naked DNA plasmids. Bioluminescent imaging (BLI) of injected animals at the 11th postinjection week revealed significantly higher transgene activity in animals receiving compacted DNA plasmids when compared to animals receiving naked DNA. There was minimal evidence of brain inflammation. Intrastriatal injections of a compacted plasmid encoding for glial cell line-derived neurotrophic factor (pGDNF) resulted in a significant overexpression of GDNF protein in the striatum 1-3 weeks after injection.


Assuntos
Encéfalo/metabolismo , DNA/administração & dosagem , Nanopartículas , Transgenes , Animais , Sequência de Bases , DNA/genética , Primers do DNA , Imuno-Histoquímica , Hibridização In Situ , Luciferases/genética , Plasmídeos , Ratos , Transdução Genética
6.
Physiol Genomics ; 37(1): 23-34, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19116247

RESUMO

Mesenchymal stem cells (MSCs) can differentiate into osteogenic, adipogenic, chondrogenic, myocardial, or neural lineages when exposed to specific stimuli, making them attractive for tissue repair and regeneration. We have used reporter gene-based imaging technology to track MSC transplantation or implantation in vivo. However, the effects of lentiviral transduction with the fluc-mrfp-ttk triple-fusion vector on the transcriptional profiles of MSCs remain unknown. In this study, gene expression differences between wild-type and transduced hMSCs were evaluated using an oligonucleotide human microarray. Significance Analysis of Microarray identified differential genes with high accuracy; RT-PCR validated the microarray results. Annotation analysis showed that transduced hMSCs upregulated cell differentiation and antiapoptosis genes while downregulating cell cycle, proliferation genes. Despite transcriptional changes associated with bone and cartilage remodeling, their random pattern indicates no systematic change of crucial genes that are associated with osteogenic, adipogenic, or chondrogenic differentiation. This correlates with the experimental results that lentiviral transduction did not cause the transduced MSCs to lose their basic stem cell identity as demonstrated by osteogenic, chondrogenic, and adipogenic differentiation assays with both transduced and wild-type MSCs, although a certain degree of alterations occurred. Histological analysis demonstrated osteogenic differentiation in MSC-loaded ceramic cubes in vivo. In conclusion, transduction of reporter genes into MSCs preserved the basic properties of stem cells while enabling noninvasive imaging in living animals to study the biodistribution and other biological activities of the cells.


Assuntos
Perfilação da Expressão Gênica , Genes Reporter , Células-Tronco Mesenquimais/metabolismo , Transcrição Gênica , Transdução Genética , Imagem Corporal Total , Adipogenia , Animais , Bioensaio , Cerâmica , Redes Reguladoras de Genes , Humanos , Luciferases/metabolismo , Proteínas Luminescentes/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Implantação de Prótese , Software , Timidina Quinase/metabolismo , Proteína Vermelha Fluorescente
7.
NMR Biomed ; 22(8): 819-25, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19434665

RESUMO

Dilated cardiomyopathy (DCM) is a major cause of mortality and morbidity in cardiac patients. Aging is often an ignored etiology of pathological conditions. Quantification of DCM and aging associated cardiac structural remodeling is important in guiding and evaluating therapeutic interventions. Diffusion tensor magnetic resonance imaging (DTMRI) has recently been used for nondestructive characterization of three-dimensional myofiber structure. In this study, we explored the potential of DTMRI in delineating microscopic structural remodeling in aging and DCM hearts. Six month (n = 10) and nine month old (n = 11) DCM (TO-2) hamsters and their age-matched controls (F1 beta) were characterized. Both aging and DCM hearts showed increased diffusivity and decreased diffusion anisotropy. DTMRI images of DCM hearts also revealed a subgroup of imaging pixels characterized by decreased radial diffusivity and increased FA. The location of these pixels showed qualitative agreement with regions of calcium deposition determined by X-ray CT imaging. Histological analysis confirmed expanded extracellular space in aging and DCM hearts as well as substantial calcium deposition in DCM hearts. These results suggest that DTMRI may provide a noninvasive technique to delineate structural remodeling associated with aging and DCM progression at the tissue and cellular level without the use of an exogenous contrast agent.


Assuntos
Envelhecimento/patologia , Cardiomiopatia Dilatada/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Coração , Miocárdio/patologia , Remodelação Ventricular , Envelhecimento/fisiologia , Animais , Anisotropia , Cardiomiopatia Dilatada/fisiopatologia , Cricetinae , Progressão da Doença , Coração/anatomia & histologia , Coração/fisiologia , Humanos , Mesocricetus , Tomografia Computadorizada por Raios X , Água/química
8.
Mol Cancer Ther ; 13(10): 2288-302, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25122066

RESUMO

Docetaxel chemotherapy remains a standard of care for metastatic castration-resistant prostate cancer (CRPC). Docetaxel modestly increases survival, yet results in frequent occurrence of side effects and resistant disease. An alternate chemotherapy with greater efficacy and minimal side effects is needed. Acquisition of metabolic aberrations promoting increased survival and metastasis in CRPC cells includes constitutive activation of Akt, loss of adenosine monophosphate-activated protein kinase (AMPK) activity due to Ser-485/491 phosphorylation, and overexpression of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMG-CoAR). We report that combination of simvastatin and metformin, within pharmacologic dose range (500 nmol/L to 4 µmol/L simvastatin and 250 µmol/L to 2 mmol/L metformin), significantly and synergistically reduces C4-2B3/B4 CRPC cell viability and metastatic properties, with minimal adverse effects on normal prostate epithelial cells. Combination of simvastatin and metformin decreased Akt Ser-473 and Thr-308 phosphorylation and AMPKα Ser-485/491 phosphorylation; increased Thr-172 phosphorylation and AMPKα activity, as assessed by increased Ser-79 and Ser-872 phosphorylation of acetyl-CoA carboxylase and HMG-CoAR, respectively; decreased HMG-CoAR activity; and reduced total cellular cholesterol and its synthesis in both cell lines. Studies of C4-2B4 orthotopic NCr-nu/nu mice further demonstrated that combination of simvastatin and metformin (3.5-7.0 µg/g body weight simvastatin and 175-350 µg/g body weight metformin) daily by oral gavage over a 9-week period significantly inhibited primary ventral prostate tumor formation, cachexia, bone metastasis, and biochemical failure more effectively than 24 µg/g body weight docetaxel intraperitoneally injected every 3 weeks, 7.0 µg/g/day simvastatin, or 350 µg/g/day metformin treatment alone, with significantly less toxicity and mortality than docetaxel, establishing combination of simvastatin and metformin as a promising chemotherapeutic alternative for metastatic CRPC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Metformina/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Sinvastatina/farmacologia , Animais , Anticolesterolemiantes/administração & dosagem , Anticolesterolemiantes/farmacologia , Movimento Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Masculino , Metformina/administração & dosagem , Camundongos , Metástase Neoplásica , Neoplasias de Próstata Resistentes à Castração/patologia , Sinvastatina/administração & dosagem
9.
J Orthop Res ; 31(6): 871-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23440976

RESUMO

Stem cells, such as mesenchymal stem cells (MSCs), contribute to bone fracture repair if they are delivered to the injury site. However, it is difficult to assess the retention and differentiation of these cells after implantation. Current options for non-invasively tracking the transplanted stem cells are limited. Cell-based therapies using MSCs would benefit greatly through the use of an imaging methodology that allows cells to be tracked in vivo and in a timely fashion. In this study, we implemented an in vivo imaging methodology to specifically track early events such as differentiation of implanted human MSCs (hMSCs). This system uses the collagen type 1 (Col1α1) promoter to drive expression of firefly luciferase (luc) in addition to a constitutively active promoter to drive the expression of green fluorescent protein (GFP). The resulting dual-promoter reporter gene system provides the opportunity for osteogenic differentiation-specific luc expression for in vivo imaging and constitutive expression of GFP for cell sorting. The function of this dual-promoter reporter gene was validated both in vitro and in vivo. In addition, the ability of this dual-promoter reporter system to image an early event of osteogenic differentiation of hMSCs was demonstrated in a murine segmental bone defect model in which reporter-labeled hMSCs were seeded into an alginate hydrogel scaffold and implanted directly into the defect. Bioluminescence imaging (BLI) was performed to visualize the turn-on of Col1α1 upon osteogenic differentiation and followed by X-ray imaging to assess the healing process for correlation with histological analyses.


Assuntos
Diferenciação Celular , Colágeno Tipo I/genética , Genes Reporter , Células-Tronco Mesenquimais/fisiologia , Osteogênese , Animais , Linhagem Celular , Cadeia alfa 1 do Colágeno Tipo I , Expressão Gênica , Humanos , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Osteoblastos/citologia , Osteoblastos/metabolismo , Regiões Promotoras Genéticas , Ratos
10.
Theranostics ; 2(6): 597-606, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768027

RESUMO

PURPOSE: A group of radiolabeled thymidine analogs were developed as radio-tracers for imaging herpes viral thymidine kinase (HSV1-tk) or its variants used as reporter gene. A transgenic mouse model was created to express tk upon liver injury or naturally occurring hepatocellular carcinoma (HCC). The purpose of this study was to use this unique animal model for initial testing with radio-labeled thymidine analogs, mainly a pair of newly emerging nucleoside analogs, D-FMAU and L-FMAU. METHODS: A transgeneic mouse model was created by putting a fused reporter gene system, firefly luciferase (luc) and HSV1-tk, under the control of mouse alpha fetoprotein (Afp) promoter. Initial multimodal imaging, which was consisted of bioluminescent imaging (BLI) and planar gamma scintigraphy with [(125)I]-FIAU, was used for examining the model creation in the new born and liver injury in the adult mice. Carcinogen diethylnitrosamine (DEN) was then administrated to induce HCC in these knock-in mice such that microPET imaging could be used to track the activity of Afp promoter during tumor development and progression by imaging tk expression first with [(18)F]-FHBG. Dynamic PET scans with D-[(18)F]-FMAU and L-[(18)F]-FMAU were then performed to evaluate this pair of relatively new tracers. Cells were derived from these liver tumors for uptake assays using H-3 labeled version of PET tracers. RESULTS: The mouse model with dual reporters: HSV1-tk and luc placed under the transcriptional control of an endogenous Afp promoter was used for imaging studies. The expression of the Afp gene was highly specific in proliferative hepatocytes, in regenerative liver, and in developing fetal liver, and thus provided an excellent indicator for liver injury and cancer development in adult mice. Both D-FMAU and L-FMAU showed stable liver tumor uptake where the tk gene was expressed under the Afp promoter. The performance of this pair of tracers was slightly different in terms of signal-to-background ratio as well as tracer clearance. CONCLUSION: The newly created knock-in mouse model was used to demonstrate the use of the dual-reporter genes driven by well-characterized cancer-specific transcriptional units in conjunction with in vivo imaging as a paradigm in studying naturally occurring cancer in live animals. While BLI is suitable for small animal imaging with luc expression, PET with L-FMAU seemed be the choice for liver injury or liver cancer imaging with this animal model for future investigations.

11.
J Vis Exp ; (56)2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22006228

RESUMO

Our understanding of how and when breast cancer cells transit from established primary tumors to metastatic sites has increased at an exceptional rate since the advent of in vivo bioluminescent imaging technologies. Indeed, the ability to locate and quantify tumor growth longitudinally in a single cohort of animals to completion of the study as opposed to sacrificing individual groups of animals at specific assay times has revolutionized how researchers investigate breast cancer metastasis. Unfortunately, current methodologies preclude the real-time assessment of critical changes that transpire in cell signaling systems as breast cancer cells (i) evolve within primary tumors, (ii) disseminate throughout the body, and (iii) reinitiate proliferative programs at sites of a metastatic lesion. However, recent advancements in bioluminescent imaging now make it possible to simultaneously quantify specific spatiotemporal changes in gene expression as a function of tumor development and metastatic progression via the use of dual substrate luminescence reactions. To do so, researchers take advantage for two light-producing luciferase enzymes isolated from the firefly (Photinus pyralis) and sea pansy (Renilla reniformis), both of which react to mutually exclusive substrates that previously facilitated their wide-spread use in in vitro cell-based reporter gene assays. Here we demonstrate the in vivo utility of these two enzymes such that one luminescence reaction specifically marks the size and location of a developing tumor, while the second luminescent reaction serves as a means to visualize the activation status of specific signaling systems during distinct stages of tumor and metastasis development. Thus, the objectives of this study are two-fold. First, we will describe the steps necessary to construct dual bioluminescent reporter cell lines, as well as those needed to facilitate their use in visualizing the spatiotemporal regulation of gene expression during specific steps of the metastatic cascade. Using the 4T1 model of breast cancer metastasis, we show that the in vivo activity of a synthetic Smad Binding Element (SBE) promoter was decreased dramatically in pulmonary metastasis as compared to that measured in the primary tumor. Recently, breast cancer metastasis was shown to be regulated by changes within the primary tumor microenvironment and reactive stroma, including those occurring in fibroblasts and infiltrating immune cells. Thus, our second objective will be to demonstrate the utility of dual bioluminescent techniques in monitoring the growth and localization of two unique cell populations harbored within a single animal during breast cancer growth and metastasis.


Assuntos
Luciferases de Vaga-Lume/análise , Luciferases de Renilla/análise , Medições Luminescentes/métodos , Neoplasias Mamárias Experimentais/patologia , Animais , Feminino , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/genética , Camundongos , Metástase Neoplásica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA