Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Inorg Chem ; 63(29): 13785-13792, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38963419

RESUMO

The Cu(I)-catalyzed azide-alkyne cycloaddition reaction between (NBu4)2[V6O13((OCH2)3CCH2N3)2] and 3-ethynylpyridine led to the formation of products capable of forming poorly soluble coordination compounds with transition metal ions such as Cu(I) and Zn(II). The formation of these poorly soluble phases is an important feature that was used to determine the course of reactions, allowing the selective preparation of symmetric bis-pyridyltriazolyl and asymmetric monopyridyltriazolyl derivatives with relatively high yields and high substrate conversions. The asymmetric compound (NBu4)2[V6O13((OCH2)3CCH2-N3C2H-C5H4N)((OCH2)3CCH2N3)] (V6asym) was utilized in the subsequent "click" postfunctionalization reaction with 1,4-diethynylbenzene, resulting in a covalently bound V6asym-V6asym dimer. This dimeric compound was subjected to scanning probe microscopy studies on gold surfaces, which revealed no electronic coupling between the hexavanadate cores within the dimer upon potential-induced switching. This observation indicates that such dimers and higher-order oligomers composed of polyoxometalate-ligand-polyoxometalate bridges can be exploited as active capacitor/memristor units, relevant to increase the data storage capacity of standard memory devices with innovative molecular switching mechanisms.

2.
Inorg Chem ; 62(9): 3761-3775, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36534941

RESUMO

A series of {V12}-nuclearity polyoxovanadate cages covalently functionalized with one or sandwiched by two phthalocyaninato (Pc) lanthanide (Ln) moieties via V-O-Ln bonds were prepared and fully characterized for paramagnetic Ln = SmIII-ErIII and diamagnetic Ln = LuIII, including YIII. The LnPc-functionalized {V12O32} cages with fully oxidized vanadium centers in the ground state were isolated as (nBu4N)3[HV12O32Cl(LnPc)] and (nBu4N)2[HV12O32Cl(LnPc)2] compounds. As corroborated by a combined experimental (EPR, DC and AC SQUID, laser photolysis transient absorption spectroscopy, and electrochemistry) and computational (DFT, MD, and model Hamiltonian approach) methods, the compounds feature intra- and intermolecular electron transfer that is responsible for a partial reduction at V(3d) centers from VV to VIV in the solid state and at high sample concentrations. The effects are generally Ln dependent and are clearly demonstrated for the (nBu4N)3[HV12O32Cl(LnPc)] representative with Ln = LuIII or DyIII. Intramolecular charge transfer takes place for Ln = LuIII and occurs from a Pc ligand via the Ln center to the {V12O32} core of the same molecule, whereas for Ln = DyIII, only intermolecular charge transfer is allowed, which is realized from Pc in one molecule to the {V12O32} core of another molecule usually via the nBu4N+ countercation. For all Ln but DyIII, two of these phenomena may be present in different proportions. Besides, it is demonstrated that (nBu4N)3[HV12O32Cl(DyPc)] is a field-induced single molecule magnet with a maximal relaxation time of the order 10-3 s. The obtained results open up the way to further exploration and fine-tuning of these three modular molecular nanocomposites regarding tailoring and control of their Ln-dependent charge-separated states (induced by intramolecular transfer) and relaxation dynamics as well as of electron hopping between molecules. This should enable us to realize ultra-sensitive polyoxometalate powered quasi-superconductors, sensors, and data storage/processing materials for quantum technologies and neuromorphic computing.

3.
Acc Chem Res ; 54(17): 3377-3389, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34427081

RESUMO

This Account highlights recent experimental and theoretical work focusing on the development of polyoxometalates (POMs) as possible active switching units in what may be called "molecule-based memory cells". Herein, we critically discuss how multiply charged vanadium-containing POMs, which exhibit stable metal-oxo bonds and are characterized by the excellent ability to change their redox states without significant structural distortions of the central polyoxoanion core, can be immobilized best and how they may work optimally at appropriate surfaces. Furthermore, we critically discuss important issues and challenges on the long way toward POM-based nanoelectronics. This Account is divided into four sections shedding light on POM interplay in solution and on surfaces, ion soft-landing of mass-selected POMs on surfaces, electronic modification of POMs on surfaces, and computational modeling of POMs on surfaces. The sections showcase the complex nature of far-reaching POM interactions with the chemical surroundings in solution and the properties of POMs in the macroscopic environment of electrode surfaces. Section 2 describes complex relationships of POMs with their counter-cations, solvent molecules, and water impurities, which have been shown to exhibit a direct impact on the resulting surface morphology, where a concentration-dependent formation of micellar structures can be potentially observed. Section 3 gives insights into the ion soft-landing deposition of mass-selected POMs on electrode surfaces, which emerges as an appealing method because the simultaneous deposition of agglomeration-stimulating counter-cations can be avoided. Section 4 provides details of electronic properties of POMs and their modification by external electronic stimuli toward the development of multiple-state resistive (memristive) switches. Section 5 sheds light on issues of the determination of the electronic structure properties of POMs across their interfaces, which is difficult to address by experiment. The studies summarized in these four sections have employed various X-ray-scattering, microscopy, spectroscopy, and computational techniques for imaging of POM interfaces in solution and on surfaces to determine the adsorption type, agglomeration tendency, distribution, and oxidation state of deposited molecules. The presented research findings and conceptual ideas may assist experimentalists and theoreticians to advance the exploration of POM electrical conductivity as a function of metal redox and spin states and to pave the way for a realization of ("brain-inspired") POM-based memory devices, memristive POM-surface device engineering, and energy efficient nonvolatile data storage and processing technologies.

4.
Phys Chem Chem Phys ; 24(43): 26848-26852, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36317506

RESUMO

One of the striking characteristics of the tris(alkoxo)-ligated Lindqvist-type polyoxovanadates [VV6O13{(OCH2)3CR}2]2- in highest oxidation state in solution is the ease of their chemical post-functionalization via the R group. On surfaces it is their conductivity as a function of individual V(3d) redox states. In both cases, the structural stability of the fully-oxidized dianion is enabled by charge-balancing counterions. In this Article, we explore the charge stability and the charge distibution across the molecular Lindqvist-type hexavanadate structure regarding the R functionality (R = OC2H4N3, CH2N3, and O3C29H36N5) and the different type of countercations (Cat = K+, Li+, NH4+, H+, or Mg2+). We show that the hexavanadate core can accept in its vacant V(3d) orbitals at least four and, in some cases, up to nine additional electrons if the negative charge is offset by the corresponding cation(s), without electron leakage to the covalently attached R groups. Remarkably, the maximum number of accepted electrons strongly depends on the type of cation(s) and is independent on the type of the remote R group exploited herein. The (Cat)n[VV6O13{(OCH2)3CR}2] complexes exibit the structural integrity in all studied charged states. Our study demonstrates the importance of the countercations of multistate polyoxovanadate nanoswitches for the development of multi-charge based molecular memories and/or batteries.


Assuntos
Fontes de Energia Elétrica , Elétrons , Estrutura Molecular , Oxirredução , Cátions
5.
Chemistry ; 27(60): 14899-14910, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34490947

RESUMO

The synthesis, structure, magnetic, and photophysical properties of two dinuclear, luminescent, mixed-ligand [CrIII 2 L(O2 CR)]3+ complexes (R=CH3 (1), Ph (2)) of a 24-membered binucleating hexa-aza-dithiophenolate macrocycle (L)2- are presented. X-ray crystallographic analysis reveals an edge-sharing bioctahedral N3 Cr(µ-SR)2 (µ1,3 -O2 CR)CrN3 core structure with µ1,3 -bridging carboxylate groups. A ferromagnetic superexchange interaction between the electron spins of the Cr3+ ions leads to a high-spin (S=3) ground state. The coupling constants (J=+24.2(1) cm-1 (1), +34.8(4) cm-1 (2), H=-2JS1 S2 ) are significantly larger than in related bis-µ-alkoxido-µ-carboxylato structures. DFT calculations performed on both complexes reproduce both the sign and strength of the exchange interactions found experimentally. Frozen methanol-dichloromethane 1 : 1 solutions of 1 and 2 luminesce at 750 nm when excited into the 4 LMCT state on the 4 A2 → 2 T1 (ν2 ) bands (λexc =405 nm). The absolute quantum yields (ΦL ) for 1 and 2 were found to be strongly temperature dependent. At 77 K in frozen MeOH/CH2 Cl2 glasses, ΦL =0.44±0.02 (for 1), ΦL =0.45±0.02 (for 2).

6.
Inorg Chem ; 60(1): 80-86, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33180468

RESUMO

A tris(alkoxo)pyridine-augmented Wells-Dawson polyoxometalate (nBu4N)6[WD-Py] (WD = P2V3W15O59(OCH2)3C, Py = C5H4N) was functionalized with phthalocyaninato metal moieties (MPc where M = Y or Yb and Pc = C32H16N8) to afford (nBu4N)4[HWD-Py(MPc)] compounds. High-resolution mass spectrometry was used to detect and identify the hybrid assembly. The magnetism studies reveal substantial differences between M = Yb (monomeric, single-ion paramagnetism) and M = Y (containing dimers, radical character). The results of electronic paramagnetic resonance spectroscopy, SQUID magnetometry, and magnetochemical calculations indicate the presence of intramolecular charge transfer from the MPc moiety to the polyoxometalate and of intermolecular charge transfer from the MPc moiety of one molecule to the polyoxometalate unit of another molecule. These compounds with identified VIV ions represent unique examples of transition-metal/lanthanide complex-POM hybrid compounds with nonphotoinduced charge transfer between electron donor and acceptor centers.

7.
Inorg Chem ; 60(15): 11599-11608, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34289690

RESUMO

Two series of charge-neutral coordination clusters featuring quasi-isostructural metal oxide cores, isolated as [Zr6Fe2Ln2O8(ib)14(bda)2(NO3)2]·xMeCN (Ln = La (1), Ce (2), Pr (3), and Nd (4); ib- = isobutyrate; H2bda = N-butyldiethanolamine) and [Zr6Fe2Ln2O8(ib)14(mda)2(NO3)2]·xMeCN (Ln = La (5), Ce (6), Pr (7), and Nd (8); H2mda = N-methyldiethanolamine), were obtained via one-pot reactions of [Fe3O(ib)6(H2O)3]NO3 as a critical precursor, Ln(NO3)3·6H2O (Ln = La, Ce, Pr, and Nd), the respective aminoalcohol, and [Zr6O4(OH)4(ib)12(H2O)]·3Hib in an acetonitrile solution. The coordination clusters in 1-8 feature {Zr6O8} cores that are structurally expanded by two 4f (Ln3+) and two 3d (Fe3+) metal ions, each individually coordinated to one of the eight oxide centers of {Zr6O8}, producing a metal skeleton where the 3d/4f positions cap four of the triangular faces of the central Zr6 octahedron. The coordination clusters differ in the chosen aminoalcohol coligands, N-butyldiethanolamine or N-methyldiethanolamine, which lead to a different isobutyrate coordination pattern in the two series, while the {Fe2Ln2Zr6O8} core structure remains virtually unaffected. All eight coordination clusters are obtained in moderate to good yields of 29-66% after only several days. Complexes 1-8 are stable against air and moisture; they are also surprisingly thermally stable up to 280 °C in air and in nitrogen atmosphere, and they represent the first reported examples of 3d/4f-functionalized zirconium oxide clusters.

8.
Inorg Chem ; 60(12): 8437-8441, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34048211

RESUMO

A new polyoxometalate compound consisting of the 39-tungsto-4-arsenate(III) unit with four incorporated VIV ions, isolated as (NH4)22[(VIVO)2(VIVO(H2O))(AsIIIWVI9O33)2(AsIIIWVI8.5VIV0.5(OH)O32)2(WVIO2)4]·48H2O (NH4-As4W39(V4)), was synthesized and fully characterized. SQUID magnetometry shows three weakly coupled VIV centers with an antiferromagnetic exchange interaction and one isolated VIV ion as a spin-1/2 Curie paramagnet. UV-vis spectroscopy indicates that the As4W39(V4) structure remains intact in aqueous solution for at least 24 h. To enable the deposition of As4W39(V4) from solution on gold surfaces, its trihexyltetradecylphosphonium salt, THTDP-As4W39(V4), was prepared. The IR spectra of both congeners reveal the structural identity of As4W39(V4) independent of the countercations. The X-ray absorption near-edge structure data confirm the presence of VIV centers in a distorted square-pyramidal coordination geometry in NH4-As4W39(V4) and THTDP-As4W39(V4). X-ray photoelectron spectroscopy of the latter, deposited on Au(111), shows that the 4 V and 35 W centers preserve their IV+ and VI+ oxidation states, while the remaining 4 W ions are reduced to IV+.

9.
Inorg Chem ; 60(14): 10415-10425, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34192460

RESUMO

The controlled adsorption of polynuclear coordination compounds with specific structural and electronic characteristics on surfaces is crucial for the prospective implementation of molecule-surface interfaces into practical electronic devices. From this perspective, a neutral 3d,4f-coordination cluster [MnII3MnIVYb3O3(OH)(L·SMe)3(OOCMe)9]·2MeCN·3EtOH (1·2MeCN·3EtOH), where L·SMe- is a Schiff base, has been synthesized and fully characterized and its adsorption on two different solid substrates, gold and graphite, has been studied. The mixed-valence compound with a bilayered metal core structure and the structurally exposed thioether groups exhibits a substantially different surface bonding to metallic gold and semimetallic graphite substrates. While on graphite the adsorption takes place only on distinguished attraction points with a locally increased number of potential bonding sites such as terrace edges and other surface defects, on gold the molecules were found to adsorb rather weakly on randomly distributed adsorption sites of the surface terraces. This entirely different behavior provides important information for the development of advanced surface materials that may enable well-distributed ordered molecular assemblies.

10.
Inorg Chem ; 59(22): 16122-16126, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33103900

RESUMO

The fully oxidized Lindqvist-type hexavanadate compounds decorated by phosphine-derivatized Au(I) moieties oriented in a transoid fashion (n-Bu4N)2[V6O13{(OCH2)3CCH2(N3C2C6H5)AuP(C6H4OMe)3}2] (POMNAu) and (n-Bu4N)2[V6O13{(OCH2)3CCH2OCH2(C2N3H)AuP(C6H4OMe)3}2] (POMCAu) have been prepared by azide-alkyne cycloaddition reactions and characterized by various techniques, including NMR, IR, and UV/vis spectroscopy and electrospray ionization mass spectrometry. Electronic structure calculations unveil the potential of these model hybrid junctions for application in controlled charge-transport experiments on substrate surfaces.

11.
Inorg Chem ; 58(6): 3881-3894, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30830759

RESUMO

A series of stable reduction-oxidation states of the cagelike [I@VIV xVV18- xO42]5- x polyoxovanadate (POV) with x = 8, 10, 12, 16, and 18 were studied with density functional theory and molecular dynamics to gain insight into the structural and electron distribution characteristics of these metal-oxo clusters and to analyze the charge/redox-dependent assemblage processes in water and acetonitrile (MeCN) solutions. The calculations show that the interplay between the POV redox state (molecular charge) and the solvent polarity, countercation size, and hydrophilicity (or hydrophobicity) controls the POV agglomeration phenomena, which substantially differ between aqueous and MeCN media. In MeCN, agglomeration is more pronounced for intermediate-charged POVs, whereas in water, the lowest-charged POVs and organic countercations tend to agglomerate into a microphase. Tests made on wet MeCN show diminished agglomeration with respect to pure MeCN. Simulations with alkali countercations in water show that only the highest-charged POV can form agglomerates. The herein presented theoretical investigation aims to support experimental studies of POVs in the field of functional nanomaterials and surfaces, where controlled molecular deposition from the liquid phase onto solid substrates requires knowledge about the features of these metal-oxo clusters in discrete solutions.

12.
Inorg Chem ; 58(3): 1988-2000, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30633505

RESUMO

The reactions of labile [Re(diimine)(CO)3(H2O)]+ precursors (diimine = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen) with dicyanoargentate anion produce the dirhenium cyanide-bridged compounds [{Re(diimine)(CO)3}2CN)]+ (1 and 2). Substitution of the axial carbonyl ligands in 2 for triphenylphosphine gives the derivative [{Re(phen)(CO)2(PPh3)}2CN]+ (3), while the employment of a neutral metalloligand [Au(PPh3)(CN)] affords heterobimetallic complex [{Re(phen)(CO)3}NCAu(PPh3)]+ (4). Furthermore, the utilization of [Au(CN)2]-, [Pt(CN)4]2-, and [Fe(CN)6]4-/3- cyanometallates leads to the higher nuclearity aggregates [{Re(diimine)(CO)3NC} xM] m+ (M = Au, x = 2, 5 and 6; Pt, x = 4, 7 and 8; Fe, x = 6, 9 and 10). All novel compounds were characterized crystallographically. Assemblies 1-8 are phosphorescent both in solution and in the solid state; according to the DFT analysis, the optical properties are mainly associated with charge transfer from Re tricarbonyl motif to the diimine fragment. The energy of this process can be substantially modified by the properties of the ancillary ligands that allows to attain near-IR emission for 3 (λem = 737 nm in CH2Cl2). The Re-FeII/III complexes 9 and 10 are not luminescent but exhibit low energy absorptions, reaching 846 nm (10) due to ReI → FeIII transition.

13.
J Am Chem Soc ; 140(48): 16635-16640, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30418764

RESUMO

The sustainable development of IT-systems requires a quest for novel concepts to address further miniaturization, performance improvement, and energy efficiency of devices. The realization of these goals cannot be achieved without an appropriate functional material. Herein, we target the technologically important electron modification using single polyoxometalate (POM) molecules envisaged as smart successors of materials that are implemented in today's complementary metal-oxide-semiconductor (CMOS) technology. Lindqvist-type POMs were physisorbed on the Au(111) surface, preserving their structural and electronic characteristics. By applying an external voltage at room temperature, the valence state of the single POM molecule could be changed multiple times through the injection of up to 4 electrons. The molecular electrical conductivity is dependent on the number of vanadium 3d electrons, resulting in several discrete conduction states with increasing conductivity. This fundamentally important finding illustrates the far-reaching opportunities for POM molecules in the area of multiple-state resistive (memristive) switching.

14.
Chemistry ; 24(35): 8787-8796, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29869809

RESUMO

Selective copper(I) to palladium(0) transmetallation of P-donors from the rigid N,N'-diphosphanyl-imidazol-2-ylidene C3 H2 [NP(tBu)2 ]2 (PCNHC P) was observed when known [Cu3 (µ3 -PCNHC P,κP,κCNHC ,κP)2 ](OTf)3 was reacted with [Pd(PPh3 )4 ]. When 1.2 equivalents of [Pd(PPh3 )4 ] was used, the product [Cu2 Pd(µ3 -PCNHC P,κP,κCNHC ,κP)2 ](OTf)2 (2(OTf)2 ) was obtained, which features a CuI -CuI -Pd0 chain and appears to be the first linear heterotrinuclear complex with d10 -d10 interactions between Pd0 and CuI . When the Cu3 precursor was reacted with 3.0 equivalents of [Pd(PPh3 )4 ], the complex [CuPd2 (µ3 -PCNHC P,κP,κCNHC ,κP)2 ](OTf)2 (3(OTf)2 ) was obtained, which, on the basis of magnetic measurements, DFT calculations, and computed nuclear shieldings, was formulated as containing a Pd0 -CuI -Pd0 chain with an electron hole delocalized over the whole cation, including the metal chain. Similarly, selective transmetallation of the P-donors in [Ag3 (µ3 -PCNHC P,κP,κCNHC ,κP)2 ](OTf)3 from silver to palladium (originating from [Pd(PPh3 )4 ]) gave the linear chain [Ag2 Pd(µ3 -PCNHC P,κP,κCNHC ,κP)2 ](OTf)2 (5(OTf)2 ), which on the basis of NMR spectroscopy comprises an AgI -AgI -Pd0 metal core. However, X-ray diffraction data collected on various samples of 5(OTf)2 were modeled with 50:50 metal disorder at the terminal positions, corresponding to a (AgI /Pd0 )-AgI -(AgI /Pd0 ) formulation. Upon standing in solution, 5(OTf)2 transformed to 6(OTf)2 , the regioisomer of 5(OTf)2 in which the Pd center has migrated to the central position of an AgI -Pd0 -AgI chain. Prolonged standing in CH2 Cl2 or by reaction with [PtCl2 (NCMe)2 ] converts complex 6(OTf)2 to the AgI /PdII complex [Ag2 PdCl2 (µ3 -PCNHC P,κP,κCNHC ,κP)2 ](OTf)2 (7(OTf)2 ). The structural data of 2(OTf)2 , 3(OTf)2 , and 7(OTf)2 establish significant heterometallophilic interactions.

15.
Inorg Chem ; 57(15): 9274-9285, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30040402

RESUMO

A series of isostructural dinuclear 3d-4f complexes, isolated as [CuLn(L·SMe)2(OOCMe)2(NO3)]· xMeOH (Ln = Gd 1, Tb 2, Dy 3, and Y 4; x = 0.75-1) and comprising one acetate and two thioether-Schiff base (L·SMe-) bridging ligands based on 4-(methylthio)aniline and 2-hydroxy-3-methoxybenzaldehyde (HL·SMe = C15H15NO2S), was synthesized and fully characterized. The magnetic properties of the charge-neutral {CuLn} complexes are dominated by ferromagnetic CuII-LnIII exchange interactions. Large-area electron transport studies reveal that the average conductivity of robust, self-assembled {CuLn} monolayers on a gold substrate is significantly lower than that of common alkanethiolates. Theoretical calculations of transmission spectra of individual complexes 1 and 4 embedded between two metallic electrodes show that the molecular current-voltage ( I- V) characteristics are strongly influenced by electron transport through the Cu centers and thus fully independent of the lanthanide ion, in excellent agreement with the experimental I- V data for 1-4. The ß-polarized transmission indicated by calculations of 1 and 4 points out their potential as spin filters. In addition, the reactivity of the title compound 1 with CuII in a square-pyramidal coordination environment toward methanolate and azide was examined, resulting in the formation of a linear trinuclear complex, [Cu2Na(L·SMe)4]NO3·3MeOH (5), characterized by antiferromagnetic exchange interactions between the two copper ions.

16.
Phys Chem Chem Phys ; 20(26): 17847-17858, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-29923560

RESUMO

The electronic structure and magnetism of mixed-valence, host-guest polyoxovanadates {X@VO54} with diamagnetic (X =) ClO4- (Td, 1) and SCN- (C∞v, 2) template anions are assessed by means of two theoretical methods: density functional theory and effective Hamiltonian calculations. The results are compared to those obtained for another member of this family with X = VO2F2- (C2v, 3) (see P. Kozlowski et al., Phys. Chem. Chem. Phys., 2017, 19, 29767-29771), for which complementary data are also acquired. It is demonstrated that the X guest anions strongly influence the electronic and magnetic properties of the system, leading to various valence states of vanadium and modifying V-O-V exchange interactions. Our findings are concordant with and elucidate the available experimental data (see K. Y. Monakhov et al., Chem. - Eur. J., 2015, 21, 2387-2397).

17.
Angew Chem Int Ed Engl ; 57(11): 2972-2975, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29327396

RESUMO

A water-soluble derivative of the polyoxovanadate {V15 E6 O42 } (E=semimetal) archetype enables the study of cluster shell rearrangements driven by supramolecular interactions. A reaction unique to E=Sb, induced exclusively by ligand metathesis in peripheral [Ni(ethylenediamine)3 ]2+ counterions, results in the formation of the metastable α1 * configurational isomer of the {V14 Sb8 O42 } cluster type. Contrary to all other polyoxovanadate shell architectures, this isomer comprises an inward-oriented vanadyl group and is ca. 50 and 12 kJ mol-1 higher in energy than the previously isolated α and ß isomers, respectively. We discuss this unexpected reaction in light of supramolecular Sb-O⋅⋅⋅V and Sb-O⋅⋅⋅Sb contacts manifested in {V14 Sb8 O42 }2 dimers detected in the solid state. ESI MS experiments confirm the stability of these dimers also in solution and in the gas phase. DFT calculations indicate that other, as of yet elusive isomers of {V14 Sb8 }, might be accessible as well.

18.
Chemistry ; 23(33): 7841-7852, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28083988

RESUMO

This Concept article provides insights into the molecular design and construction aspects of polyoxocuprates (POCus), an emerging class of polyoxometalate (POM)-like architectures featuring low-to-high nuclearity copper(II)-oxo/hydroxo skeletons. POCus have been identified to adopt the structural principles of classical POMs consisting of early transition metals. Their potential to afford motifs of the noble-metal-based POMs is exploited. "Cross-structural topological transformation" is introduced to generalize skeletal relationships between POCus and POMs. The study opens up strategies toward the brand-new structural chemistry of POCus with relevance to homogeneous photocatalysis, medicinal chemistry, molecular magnetism, and quantum computing.

19.
Chemistry ; 23(27): 6504-6508, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28324628

RESUMO

Transamination of [Co{N(SiMe3 )2 }2 ]2 with C6 H4 (NHSiiPr3 )2 gave the centrosymmetric trinuclear [{Coter N(SiMe3 )2 (µ-η-[o-C6 H4 (κNSiiPr3 )2 ])}2 Coint ] (1) (Coter , Coint =terminal, internal Co, respectively), with 3-coordinate Coter , and Coint "sandwiched" between the o-phenylenes of the two ligands; experimental and computational data support CoII centres and ditopic o-amido-imino-cyclohexen-allyl ligands; magnetic studies reveal intermetallic ferromagnetic interactions and single-molecule magnet (SMM) character. One-electron reduction of 1 yielded the salt [K(18-crown-6)(THF)2 ][{Coter N(SiMe3 )2 (µ-η-[o-C6 H4 (κNSiiPr3 )2 ])}2 Coint ] (4) with the anion isostructural to 1. The centrosymmetric Fe complex [{Feter N(SiMe3 )2 (µ-η-[o-C6 H4 (κNSiiPr3 )2 ])}2 Feint ] (5), analogous to 1, was also obtained.

20.
Inorg Chem ; 55(8): 3777-88, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27015599

RESUMO

We investigated computationally the α-, γ-, and ß-isomeric structures, relative stabilities, and the electronic and basicity properties of magnetic [V(IV)14E8O50](12-) (hereafter referred to as {V14E8}) heteropolyoxovanadates (heteroPOVs) and their heavier chalcogenide-substituted [V(IV)14E8O42X8](12-) ({V14E8X8}) derivatives for E = Si(IV), Ge(IV), and Sn(IV) and X = S, Se, and Te. We used density functional theory (DFT) with scalar relativistic corrections in combination with the conductor-like screening model of solvation. The main purpose of this investigation is to introduce the structure-property relations in heteroPOVs as well as to assist the synthesis and molecular deposition of these molecular vanadium-oxide spin clusters on surfaces. "Fully-reduced" polyoxoanions {V14E8} and {V14E8X8} are virtually comprised of [V(IV)14O38](20-) {V14} skeletons of different symmetries, that is, D2d for α-, D2 for γ-, and D4h for ß-isomers, which are stabilized by the four {E2O3}(2+) and four {E2OX2}(2+) moieties, respectively. Our DFT calculations reveal stability trends α > γ > ß for polyoxoanions {V14E8} and {V14E8X8}, based on relative energies and HOMO-LUMO energy gaps. The α-isomeric polyoxoanions {V14E8} and {V14E8X8} with the high negative net charges may easily pick up protons at the terminal E-Ot and E-Xt sites, respectively, which is evidenced by strongly negative enthalpies of monoprotonation. Energetically favorable sites on polyoxoanions α-{V14E8} and α-{V14E8X8} for electrostatic pairing with countercations were also determined. Among ß and γ isomers, the hitherto unknown γ-[V14Sn8O50](12-) and γ-[V14Sn8O42S8](12-) seem to be the most viable targets for isolation. Furthermore, these Sn-substituted polyoxoanions are of high interest for electrochemical studies because of their capability to act as two-electron redox catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA