Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 239(1): 54-65, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097254

RESUMO

Atmospheric vapor-pressure deficit (VPD) is increasing in many regions and has a large impact on plant productivity. A VPD increase leads to raising transpiration rate (TR) and soil-water demand, risking productivity penalties. Like water, nitrogen is critical to productivity, but the effect of VPD on legume nitrogen fixation is undocumented. To address this, we developed a portable system for quantifying nitrogen fixation noninvasively and at a high temporal resolution by tracking the rate of hydrogen gas evolution by root nodules. Combining field and controlled-environment experiments where we measured leaf gas exchange and H2 production by nodules, we confirmed the ability of the system to track nitrogen fixation dynamics. Raising VPD from 0.5 to 3 kPa within c. 2.5 h under well-watered conditions increased nitrogen fixation by up to 25% in addition to TR, consistent with the hypothesis that raising VPD in that range might have alleviated nitrogenase feedback inhibition. Genotypic differences were found in this response, indicating a potential for breeding. Our study provides evidence for an important environmental effect on nitrogen fixation that is not taken into account in current crop and vegetation models, pointing to untapped avenues for better understanding climate change effects on legumes and nitrogen cycling.


Assuntos
Fabaceae , Fixação de Nitrogênio , Melhoramento Vegetal , Folhas de Planta/fisiologia , Água , Gases , Pressão de Vapor , Nitrogênio , Transpiração Vegetal/fisiologia
2.
Physiol Plant ; 174(5): e13752, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36281842

RESUMO

Genetic manipulation of whole-plant transpiration rate (TR) response to increasing atmospheric vapor pressure deficit (VPD) is a promising approach for crop adaptation to various drought regimes under current and future climates. Genotypes with a non-linear TR response to VPD are expected to achieve yield gains under terminal drought, thanks to a water conservation strategy, while those with a linear response exhibit a consumptive strategy that is more adequate for well-watered or transient-drought environments. In wheat, previous efforts indicated that TR has a genetic basis under naturally fluctuating conditions, but because TR is responsive to variation in temperature, photosynthetically active radiation, and evaporative demand, the genetic basis of its response VPD per se has never been isolated. To address this, we developed a controlled-environment gravimetric phenotyping approach where we imposed VPD regimes independent from other confounding environmental variables. We screened three nested association mapping populations totaling 150 lines, three times over a 3-year period. The resulting dataset, based on phenotyping nearly 1400 plants, enabled constructing 63-point response curves for each genotype, which were subjected to a genome-wide association study. The analysis revealed a hotspot for TR response to VPD on chromosome 5A, with SNPs explaining up to 17% of the phenotypic variance. The key SNPs were found in haploblocks that are enriched in membrane-associated genes, consistent with the hypothesized physiological determinants of the trait. These results indicate a promising potential for identifying new alleles and designing next-gen wheat cultivars that are better adapted to current and future drought regimes.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Pressão de Vapor , Triticum/genética , Folhas de Planta/fisiologia , Transpiração Vegetal/genética
3.
Planta ; 250(1): 115-127, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30941570

RESUMO

MAIN CONCLUSION: Nocturnal transpiration, through its circadian control, plays a role in modulating daytime transpiration response to increasing evaporative demand, to potentially enable drought tolerance in wheat. Limiting plant transpiration rate (TR) in response to increasing vapor pressure deficit (VPD) has been suggested to enable drought tolerance through water conservation. However, there is very little information on the extent of diversity of TR response curves to "true" VPD (i.e., independent from temperature). Furthermore, new evidence indicate that water-saving could operate by modulating nocturnal TR (TRN), and that this response might be coupled to daytime gas exchange. Based on 3 years of experimental data on a diverse group of 77 genotypes from 25 countries and 5 continents, a first goal of this study was to characterize the functional diversity in daytime TR responses to VPD and TRN in wheat. A second objective was to test the hypothesis that these traits could be coupled through the circadian clock. Using a new gravimetric phenotyping platform that allowed for independent temperature and VPD control, we identified three and fourfold variation in daytime and nighttime responses, respectively. In addition, TRN was found to be positively correlated with slopes of daytime TR responses to VPD, and we identified pre-dawn variation in TRN that likely mediated this relationship. Furthermore, pre-dawn increase in TRN positively correlated with the year of release among drought-tolerant Australian cultivars and with the VPD threshold at which they initiated water-saving. Overall, the study indicates a substantial diversity in TR responses to VPD that could be leveraged to enhance fitness under water-limited environments, and that TRN and its circadian control may play an important role in the expression of water-saving.


Assuntos
Relógios Circadianos/fisiologia , Transpiração Vegetal/fisiologia , Triticum/fisiologia , Água/metabolismo , Secas , Genótipo , Fenótipo , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Temperatura , Triticum/genética , Pressão de Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA