Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chempluschem ; 87(7): e202200090, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35543203

RESUMO

Reliable catalysis is critical for the synthesis of various chemicals, molecular sensing and biomedicine. G-quadruplex/Hemin (GQH) complex, a peroxidase-mimicking DNAzyme, has been widely used in various publications. However, a concern exists about the unstable kinetics of GQH-catalyzed peroxidation. This work investigates several factors that result in the inactivation of GQH and the signal degradation during long reaction periods, including pH, buffer component, the selection of substrate and the oxidation damage of cofactor. Using colorimetric and fluorescent assays, GQH was found to be highly unstable under basic conditions with 50 % of GQH activity lost within 2 minutes at high H2 O2 concentrations. Appropriate conditions and substrates are suggested for accurately characterizing GQH-catalyzed reactions, as well as optimization to improve the catalytic reliability, such as the use of polyhistidine and cascade reactions. These results could be useful for GQH-related applications.


Assuntos
DNA Catalítico , Quadruplex G , Catálise , DNA Catalítico/química , DNA Catalítico/metabolismo , Hemina/química , Hemina/metabolismo , Peróxido de Hidrogênio/química , Cinética , Reprodutibilidade dos Testes
2.
Aging Cell ; 21(11): e13727, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36219531

RESUMO

There is still a significant lack of knowledge regarding many aspects of the etiopathology and consequences of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in humans. For example, the variety of molecular mechanisms mediating this infection, and the long-term consequences of the disease remain poorly understood. It first seemed like the SARS-CoV-2 infection primarily caused a serious respiratory syndrome. However, over the last years, an increasing number of studies also pointed towards the damaging effects of this infection has on the central nervous system (CNS). In fact, evidence suggests a possible disruption of the blood-brain barrier and deleterious effects on the CNS, especially in patients who already suffer from other pathologies, such as neurodegenerative disorders. The molecular mechanisms behind these effects on the CNS could involve the dysregulation of mitochondrial physiology, a well-known early marker of neurodegeneration and a hallmark of aging. Moreover, mitochondria are involved in the activation of the inflammatory response, which has also been broadly described in the CNS in COVID-19. Here, we critically review the current bibliography regarding the presence of neurodegenerative symptoms in COVID-19 patients, with a special emphasis on the mitochondrial mechanisms of these disorders.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Barreira Hematoencefálica , Sistema Nervoso Central , Mitocôndrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA