RESUMO
T-lineage acute lymphoblastic leukaemia (T-ALL) is a high-risk tumour1 that has eluded comprehensive genomic characterization, which is partly due to the high frequency of noncoding genomic alterations that result in oncogene deregulation2,3. Here we report an integrated analysis of genome and transcriptome sequencing of tumour and remission samples from more than 1,300 uniformly treated children with T-ALL, coupled with epigenomic and single-cell analyses of malignant and normal T cell precursors. This approach identified 15 subtypes with distinct genomic drivers, gene expression patterns, developmental states and outcomes. Analyses of chromatin topology revealed multiple mechanisms of enhancer deregulation that involve enhancers and genes in a subtype-specific manner, thereby demonstrating widespread involvement of the noncoding genome. We show that the immunophenotypically described, high-risk entity of early T cell precursor ALL is superseded by a broader category of 'early T cell precursor-like' leukaemia. This category has a variable immunophenotype and diverse genomic alterations of a core set of genes that encode regulators of hematopoietic stem cell development. Using multivariable outcome models, we show that genetic subtypes, driver and concomitant genetic alterations independently predict treatment failure and survival. These findings provide a roadmap for the classification, risk stratification and mechanistic understanding of this disease.
Assuntos
Genoma Humano , Genômica , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Feminino , Humanos , Masculino , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Epigenômica , Regulação Leucêmica da Expressão Gênica , Genoma Humano/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Análise de Célula Única , Transcriptoma/genética , Linfócitos T/citologia , Linfócitos T/patologiaRESUMO
Transcriptome sequencing has identified multiple subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL) of prognostic significance, but a minority of cases lack a known genetic driver. Here, we used integrated whole-genome (WGS) and -transcriptome sequencing (RNA-seq), enhancer mapping, and chromatin topology analysis to identify previously unrecognized genomic drivers in B-ALL. Newly diagnosed (n = 3221) and relapsed (n = 177) B-ALL cases with tumor RNA-seq were studied. WGS was performed to detect mutations, structural variants, and copy number alterations. Integrated analysis of histone 3 lysine 27 acetylation and chromatin looping was performed using HiChIP. We identified a subset of 17 newly diagnosed and 5 relapsed B-ALL cases with a distinct gene expression profile and 2 universal and unique genomic alterations resulting from aberrant recombination-activating gene activation: a focal deletion downstream of PAN3 at 13q12.2 resulting in CDX2 deregulation by the PAN3 enhancer and a focal deletion of exons 18-21 of UBTF at 17q21.31 resulting in a chimeric fusion, UBTF::ATXN7L3. A subset of cases also had rearrangement and increased expression of the PAX5 gene, which is otherwise uncommon in B-ALL. Patients were more commonly female and young adult with median age 35 (range,12-70 years). The immunophenotype was characterized by CD10 negativity and immunoglobulin M positivity. Among 16 patients with known clinical response, 9 (56.3%) had high-risk features including relapse (n = 4) or minimal residual disease >1% at the end of remission induction (n = 5). CDX2-deregulated, UBTF::ATXN7L3 rearranged (CDX2/UBTF) B-ALL is a high-risk subtype of leukemia in young adults for which novel therapeutic approaches are required.
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Adulto , Idoso , Fator de Transcrição CDX2/genética , Criança , Cromatina , Feminino , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Pol1 do Complexo de Iniciação de Transcrição , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Fatores de Transcrição/genética , Transcriptoma , Adulto JovemRESUMO
Conformation of antigen receptor gene loci spatially juxtaposes rearranging gene segments in the appropriate cell lineage and developmental stage. We describe a three-step pathway that establishes the structure of the 2.8-Mb immunoglobulin heavy chain gene (IgH) locus in pro-B cells. Each step uses a different transcription factor and leads to increasing levels of structural organization. CTCF mediates one level of compaction that folds the locus into several 250- to 400-kb subdomains, and Pax5 further compacts the 2-Mb region that encodes variable (VH) gene segments. The 5' and 3' domains are brought together by the transcription factor YY1 to establish the configuration within which gene recombination initiates. Such stepwise mechanisms may apply more generally to establish regulatory fine structure within megabase-sized topologically associated domains.
Assuntos
Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Células Precursoras de Linfócitos B/química , Animais , Fator de Ligação a CCCTC , Células Cultivadas , Hibridização in Situ Fluorescente , Camundongos Endogâmicos C57BL , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Recombinação Genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , alfa-Amilases Salivares/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismoRESUMO
RATIONALE: Mutations in the transcription factor TBX20 (T-box 20) are associated with congenital heart disease. Germline ablation of Tbx20 results in abnormal heart development and embryonic lethality by embryonic day 9.5. Because Tbx20 is expressed in multiple cell lineages required for myocardial development, including pharyngeal endoderm, cardiogenic mesoderm, endocardium, and myocardium, the cell type-specific requirement for TBX20 in early myocardial development remains to be explored. OBJECTIVE: Here, we investigated roles of TBX20 in midgestation cardiomyocytes for heart development. METHODS AND RESULTS: Ablation of Tbx20 from developing cardiomyocytes using a doxycycline inducible cTnTCre transgene led to embryonic lethality. The circumference of developing ventricular and atrial chambers, and in particular that of prospective left atrium, was significantly reduced in Tbx20 conditional knockout mutants. Cell cycle analysis demonstrated reduced proliferation of Tbx20 mutant cardiomyocytes and their arrest at the G1-S phase transition. Genome-wide transcriptome analysis of mutant cardiomyocytes revealed differential expression of multiple genes critical for cell cycle regulation. Moreover, atrial and ventricular gene programs seemed to be aberrantly regulated. Putative direct TBX20 targets were identified using TBX20 ChIP-Seq (chromatin immunoprecipitation with high throughput sequencing) from embryonic heart and included key cell cycle genes and atrial and ventricular specific genes. Notably, TBX20 bound a conserved enhancer for a gene key to atrial development and identity, COUP-TFII/Nr2f2 (chicken ovalbumin upstream promoter transcription factor 2/nuclear receptor subfamily 2, group F, member 2). This enhancer interacted with the NR2F2 promoter in human cardiomyocytes and conferred atrial specific gene expression in a transgenic mouse in a TBX20-dependent manner. CONCLUSIONS: Myocardial TBX20 directly regulates a subset of genes required for fetal cardiomyocyte proliferation, including those required for the G1-S transition. TBX20 also directly downregulates progenitor-specific genes and, in addition to regulating genes that specify chamber versus nonchamber myocardium, directly activates genes required for establishment or maintenance of atrial and ventricular identity. TBX20 plays a previously unappreciated key role in atrial development through direct regulation of an evolutionarily conserved COUPT-FII enhancer.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Átrios do Coração/embriologia , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/genética , Animais , Linhagem Celular , Proliferação de Células , Células Cultivadas , Fase G1 , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Fase S , Proteínas com Domínio T/metabolismoRESUMO
Acute lymphoblastic leukemia expressing the gamma delta T-cell receptor (γδ T-ALL) is a poorly understood disease. We studied 200 children with γδ T-ALL from 13 clinical study groups to understand the clinical and genetic features of this disease. We found age and genetic drivers were significantly associated with outcome. γδ T-ALL diagnosed in children under 3 years of age was extremely high-risk and enriched for genetic alterations that result in both LMO2 activation and STAG2 inactivation. Mechanistically, using patient samples and isogenic cell lines, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping, resulting in deregulation of gene expression associated with T-cell differentiation. High-throughput drug screening identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which can be targeted by poly(ADP-ribose) polymerase inhibition. These data provide a diagnostic framework for classification and risk stratification of pediatric γδ T-ALL. Significance: Patients with acute lymphoblastic leukemia expressing the gamma delta T-cell receptor under 3 years old or measurable residual disease ≥1% at end of induction showed dismal outcomes and should be classified as having high-risk disease. The STAG2/LMO2 subtype was enriched in this very young age group. STAG2 inactivation may perturb chromatin conformation and cell differentiation and confer vulnerability to poly(ADP-ribose) polymerase inhibition.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas com Domínio LIM , Humanos , Proteínas com Domínio LIM/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pré-Escolar , Masculino , Feminino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Lactente , Criança , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Rearranjo Gênico , Proteínas Proto-OncogênicasRESUMO
PURPOSE: Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a high-risk but poorly characterized disease. METHODS: We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by transcriptome and genome sequencing. Experimental modeling was used to examine the mechanistic impacts of genomic alterations. Therapeutic vulnerabilities were identified by high throughput drug screening of cell lines and xenografts. RESULTS: γδ T-ALL in children under three was extremely high-risk with 5-year event-free survival (33% v. 70% [age 3-<10] and 73% [age ≥10], P =9.5 x 10 -5 ) and 5-year overall survival (49% v. 78% [age 3-<10] and 81% [age ≥10], P =0.002), differences not observed in non-γδ T-ALL. γδ T-ALL in this age group was enriched for genomic alterations activating LMO2 activation and inactivating STAG2 inactivation ( STAG2/LMO2 ). Mechanistically, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping resulting in deregulation of gene expression associated with T-cell differentiation. Drug screening showed resistance to prednisolone, consistent with clinical slow treatment response, but identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which was efficaciously targeted by Poly(ADP-ribose) polymerase (PARP) inhibition, with synergism with HDAC inhibitors. Ex-vivo drug screening on PDX cells validated the efficacy of PARP inhibitors as well as other potential targets including nelarabine. CONCLUSION: γδ T-ALL in children under the age of three is extremely high-risk and enriched for STAG2/LMO2 ALL. STAG2 loss perturbs chromatin conformation and differentiation, and STAG2/LMO2 ALL is sensitive to PARP inhibition. These data provide a diagnostic and therapeutic framework for pediatric γδ T-ALL. SUPPORT: The authors are supported by the American and Lebanese Syrian Associated Charities of St Jude Children's Research Hospital, NCI grants R35 CA197695, P50 CA021765 (C.G.M.), the Henry Schueler 41&9 Foundation (C.G.M.), and a St. Baldrick's Foundation Robert J. Arceci Innovation Award (C.G.M.), Gabriella Miller Kids First X01HD100702 (D.T.T and C.G.M.) and R03CA256550 (D.T.T. and C.G.M.), F32 5F32CA254140 (L.M.), and a Garwood Postdoctoral Fellowship of the Hematological Malignancies Program of the St Jude Children's Research Hospital Comprehensive Cancer Center (S.K.). This project was supported by the National Cancer Institute of the National Institutes of Health under the following award numbers: U10CA180820, UG1CA189859, U24CA114766, U10CA180899, U10CA180866 and U24CA196173. DISCLAIMER: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding agencies were not directly involved in the design of the study, gathering, analysis and interpretation of the data, writing of the manuscript, or decision to submit the manuscript for publication.
RESUMO
Acute leukemias of ambiguous lineage (ALAL), including mixed phenotype acute leukemia (MPAL) and related entities such as early T-cell precursor acute leukemia (ETP-ALL), remain diagnostic and clinical challenges due to limited understanding of pathogenesis, reliance of immunophenotyping to classify disease, and the lack of a rational approach to guide selection of appropriate therapy. Recent studies utilizing genomic sequencing and complementary approaches have provided key insights that are changing the way in which such leukemias are classified, and potentially, treated. Several recurrent genomic alterations define leukemias that straddle immunophenotypic entities, such as ZNF384-rearranged childhood B-ALL and B/myeloid MPAL, and BCL11B-rearranged T/myeloid MPAL, ETP-ALL and AML. In contrast, some cases of MPAL represent canonical ALL/AML entities exhibiting lineage aberrancy. For many cases of ALAL, experimental approaches indicate lineage aberrancy arises from acquisition of a founding genetic alteration into a hematopoietic stem or progenitor cell. Determination of optimal therapeutic approach requires genomic characterization of uniformly treated ALAL patients in prospective studies, but several approaches, including kinase inhibitors and BH3 mimetics may be efficacious in subsets of ALAL.
Assuntos
Genômica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Imunofenotipagem , Estudos Prospectivos , Proteínas Repressoras , Proteínas Supressoras de TumorRESUMO
Genome-wide association studies (GWAS) have identified many disease-associated variants, yet mechanisms underlying these associations remain unclear. To understand obesity-associated variants, we generate gene regulatory annotations in adipocytes and hypothalamic neurons across cellular differentiation stages. We then test variants in 97 obesity-associated loci using a massively parallel reporter assay and identify putatively causal variants that display cell type specific or cross-tissue enhancer-modulating properties. Integrating these variants with gene regulatory information suggests genes that underlie obesity GWAS associations. We also investigate a complex genomic interval on 16p11.2 where two independent loci exhibit megabase-range, cross-locus chromatin interactions. We demonstrate that variants within these two loci regulate a shared gene set. Together, our data support a model where GWAS loci contain variants that alter enhancer activity across tissues, potentially with temporally restricted effects, to impact the expression of multiple genes. This complex model has broad implications for ongoing efforts to understand GWAS.
Assuntos
Adipócitos/fisiologia , Elementos Facilitadores Genéticos , Pleiotropia Genética , Obesidade/genética , Adipócitos/citologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Estudo de Associação Genômica Ampla , Gigantismo/genética , Gigantismo/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Humanos , Hipotálamo/fisiologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , MAP Quinase Quinase 5/genética , Neurônios/citologia , Neurônios/fisiologia , Polimorfismo de Nucleotídeo Único , Proteínas Quinases/genética , Locos de Características Quantitativas , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Fatores de Transcrição/genética , TranscriptomaRESUMO
Genome-wide association studies (GWAS) have implicated the IL33 locus in asthma, but the underlying mechanisms remain unclear. Here, we identify a 5 kb region within the GWAS-defined segment that acts as an enhancer-blocking element in vivo and in vitro. Chromatin conformation capture showed that this 5 kb region loops to the IL33 promoter, potentially regulating its expression. We show that the asthma-associated single nucleotide polymorphism (SNP) rs1888909, located within the 5 kb region, is associated with IL33 gene expression in human airway epithelial cells and IL-33 protein expression in human plasma, potentially through differential binding of OCT-1 (POU2F1) to the asthma-risk allele. Our data demonstrate that asthma-associated variants at the IL33 locus mediate allele-specific regulatory activity and IL33 expression, providing a mechanism through which a regulatory SNP contributes to genetic risk of asthma.
Assuntos
Asma/genética , Elementos Facilitadores Genéticos , Interleucina-33/genética , Alelos , Animais , Asma/metabolismo , Cromatina/genética , Cromatina/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Interleucina-33/metabolismo , Masculino , Camundongos Transgênicos , Fator 1 de Transcrição de Octâmero/genética , Fator 1 de Transcrição de Octâmero/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Peixe-ZebraRESUMO
Pediatric therapy-related myeloid neoplasms (tMN) occur in children after exposure to cytotoxic therapy and have a dismal prognosis. The somatic and germline genomic alterations that drive these myeloid neoplasms in children and how they arise have yet to be comprehensively described. We use whole exome, whole genome, and/or RNA sequencing to characterize the genomic profile of 84 pediatric tMN cases (tMDS: n = 28, tAML: n = 56). Our data show that Ras/MAPK pathway mutations, alterations in RUNX1 or TP53, and KMT2A rearrangements are frequent somatic drivers, and we identify cases with aberrant MECOM expression secondary to enhancer hijacking. Unlike adults with tMN, we find no evidence of pre-existing minor tMN clones (including those with TP53 mutations), but rather the majority of cases are unrelated clones arising as a consequence of cytotoxic therapy. These studies also uncover rare cases of lineage switch disease rather than true secondary neoplasms.
Assuntos
Leucemia Mieloide Aguda/genética , Segunda Neoplasia Primária/genética , Criança , Regulação Neoplásica da Expressão Gênica , Genômica , Histona-Lisina N-Metiltransferase , Humanos , Leucemia Mieloide Aguda/terapia , Mutação , Síndromes Mielodisplásicas , Proteína de Leucina Linfoide-Mieloide , Segunda Neoplasia Primária/terapia , Prognóstico , Sequenciamento do ExomaRESUMO
Lineage-ambiguous leukemias are high-risk malignancies of poorly understood genetic basis. Here, we describe a distinct subgroup of acute leukemia with expression of myeloid, T lymphoid, and stem cell markers driven by aberrant allele-specific deregulation of BCL11B, a master transcription factor responsible for thymic T-lineage commitment and specification. Mechanistically, this deregulation was driven by chromosomal rearrangements that juxtapose BCL11B to superenhancers active in hematopoietic progenitors, or focal amplifications that generate a superenhancer from a noncoding element distal to BCL11B. Chromatin conformation analyses demonstrated long-range interactions of rearranged enhancers with the expressed BCL11B allele and association of BCL11B with activated hematopoietic progenitor cell cis-regulatory elements, suggesting BCL11B is aberrantly co-opted into a gene regulatory network that drives transformation by maintaining a progenitor state. These data support a role for ectopic BCL11B expression in primitive hematopoietic cells mediated by enhancer hijacking as an oncogenic driver of human lineage-ambiguous leukemia. SIGNIFICANCE: Lineage-ambiguous leukemias pose significant diagnostic and therapeutic challenges due to a poorly understood molecular and cellular basis. We identify oncogenic deregulation of BCL11B driven by diverse structural alterations, including de novo superenhancer generation, as the driving feature of a subset of lineage-ambiguous leukemias that transcend current diagnostic boundaries.This article is highlighted in the In This Issue feature, p. 2659.
Assuntos
Elementos Facilitadores Genéticos , Leucemia Mieloide Aguda , Proteínas Repressoras , Proteínas Supressoras de Tumor , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genéticaRESUMO
Disease-associated genetic variants that lie in non-coding regions found by genome-wide association studies are thought to alter the functionality of transcription regulatory elements and target gene expression. To uncover causal genetic variants, variant regulatory elements and their target genes, here we cross-reference human transcriptomic, epigenomic and chromatin conformation datasets. Of 104 genetic variant regions associated with atrial fibrillation candidate target genes are prioritized. We optimize EMERGE enhancer prediction and use accessible chromatin profiles of human atrial cardiomyocytes to more accurately predict cardiac regulatory elements and identify hundreds of sub-threshold variants that co-localize with regulatory elements. Removal of mouse homologues of atrial fibrillation-associated regions in vivo uncovers a distal regulatory region involved in Gja1 (Cx43) expression. Our analyses provide a shortlist of genes likely affected by atrial fibrillation-associated variants and provide variant regulatory elements in each region that link genetic variation and target gene regulation, helping to focus future investigations.
Assuntos
Fibrilação Atrial/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Linhagem Celular , Cromatina/genética , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Variação Genética , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Humanos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismoRESUMO
Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci.
Assuntos
Doenças Cardiovasculares/genética , Genoma Humano , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Loci Gênicos , Estudo de Associação Genômica Ampla , Genômica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Polimorfismo de Nucleotídeo Único , Elementos Reguladores de TranscriçãoRESUMO
ATAC-seq is a high-throughput sequencing technique that identifies open chromatin. Depending on the cell type, ATAC-seq samples may contain ~20-80% of mitochondrial sequencing reads. As the regions of open chromatin of interest are usually located in the nuclear genome, mitochondrial reads are typically discarded from the analysis. We tested two approaches to decrease wasted sequencing in ATAC-seq libraries generated from lymphoblastoid cell lines: targeted cleavage of mitochondrial DNA fragments using CRISPR technology and removal of detergent from the cell lysis buffer. We analyzed the effects of these treatments on the number of usable (unique, non-mitochondrial) reads and the number and quality of peaks called, including peaks identified in enhancers and transcription start sites. Both treatments resulted in considerable reduction of mitochondrial reads (1.7 and 3-fold, respectively). The removal of detergent, however, resulted in increased background and fewer peaks. The highest number of peaks and highest quality data was obtained by preparing samples with the original ATAC-seq protocol (using detergent) and treating them with CRISPR. This strategy reduced the amount of sequencing required to call a high number of peaks, which could lead to cost reduction when performing ATAC-seq on large numbers of samples and in cell types that contain a large amount of mitochondria.
Assuntos
Sistemas CRISPR-Cas , Núcleo Celular/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mitocôndrias/genética , Linhagem Celular , DNA Mitocondrial/química , DNA Mitocondrial/genética , Humanos , Linfócitos/metabolismoRESUMO
Early B cell development is characterized by large-scale Igh locus contraction prior to V(D)J recombination to facilitate a highly diverse Ig repertoire. However, an understanding of the molecular architecture that mediates locus contraction remains unclear. We have combined high-resolution chromosome conformation capture (3C) techniques with 3D DNA FISH to identify three conserved topological subdomains. Each of these topological folds encompasses a major VH gene family that become juxtaposed in pro-B cells via megabase-scale chromatin looping. The transcription factor Pax5 organizes the subdomain that spans the VHJ558 gene family. In its absence, the J558 VH genes fail to associate with the proximal VH genes, thereby providing a plausible explanation for reduced VHJ558 gene rearrangements in Pax5-deficient pro-B cells. We propose that Igh locus contraction is the cumulative effect of several independently controlled chromatin subdomains that provide the structural infrastructure to coordinate optimal antigen receptor assembly.