Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Clin Infect Dis ; 62(11): 1419-21, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26962076

RESUMO

Human polyomavirus 6 (HPyV6) is most often detected at the skin surface of healthy individuals. Here, we demonstrate for the first time that HPyV6 also infects internal tissues. We provide direct evidence of HPyV6 infecting a lymph node of a patient with an angiolymphoid hyperplasia with eosinophilia or Kimura disease.


Assuntos
Hiperplasia Angiolinfoide com Eosinofilia , Linfonodos/virologia , Infecções por Polyomavirus , Polyomavirus/genética , Feminino , Humanos , Metagenoma , Pessoa de Meia-Idade , Polyomavirus/isolamento & purificação
2.
Viruses ; 16(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543840

RESUMO

Viruses infecting bacteria (bacteriophages) represent the most abundant viral particles in the human body. They participate in the control of the human-associated bacterial communities and play an important role in the dissemination of virulence genes. Here, we present the identification of a new filamentous single-stranded DNA phage of the family Inoviridae, named Ralstonia Inoviridae Phage 1 (RIP1), in the human blood. Metagenomics and PCR analyses detected the RIP1 genome in blood serum, in the absence of concomitant bacterial infection or contamination, suggesting inovirus persistence in the human blood. Finally, we have experimentally demonstrated that the RIP1-encoded rolling circle replication initiation protein and serine integrase have functional nuclear localization signals and upon expression in eukaryotic cells both proteins were translocated into the nucleus. This observation adds to the growing body of data suggesting that phages could have an overlooked impact on the evolution of eukaryotic cells.


Assuntos
Bacteriófagos , Inovirus , Humanos , Inovirus/genética , Genoma Viral , Bactérias , Bacteriófagos/genética , DNA de Cadeia Simples/metabolismo
4.
Viruses ; 13(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34834969

RESUMO

Despite a surge of RNA virome sequencing in recent years, there are still many RNA viruses to uncover-as indicated by the relevance of viral dark matter to RNA virome studies (i.e., putative viruses that do not match to taxonomically identified viruses). This study explores a unique site, a high-rate algal pond (HRAP), for culturing industrially microalgae, to elucidate new RNA viruses. The importance of viral-host interactions in aquatic systems are well documented, and the ever-expanding microalgae industry is no exception. As the industry becomes a more important source of sustainable plastic manufacturing, a producer of cosmetic pigments and alternative protein sources, and a means of CO2 remediation in the face of climate change, studying microalgal viruses becomes a vital practice for proactive management of microalgae cultures at the industrial level. This study provides evidence of RNA microalgal viruses persisting in a CO2 remediation pilot project HRAP and uncovers the diversity of the RNA virosphere contained within it. Evidence shows that family Marnaviridae is cultured in the basin, alongside other potential microalgal infecting viruses (e.g., family Narnaviridae, family Totitiviridae, and family Yueviridae). Finally, we demonstrate that the RNA viral diversity of the HRAP is temporally dynamic across two successive culturing seasons.


Assuntos
Microalgas/virologia , Filogenia , Lagoas , Vírus de RNA/classificação , Microbiologia da Água , Animais , Biodiversidade , Biomassa , Metagenoma , Projetos Piloto , Vírus de RNA/genética , Rotíferos/virologia , Estações do Ano , Água
5.
Viruses ; 13(5)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925487

RESUMO

Some mosquito species have significant public health importance given their ability to transmit major diseases to humans and animals, making them the deadliest animals in the world. Among these, the Aedes (Ae.) genus is a vector of several viruses such as Dengue, Chikungunya, and Zika viruses that can cause serious pathologies in humans. Since 2004, Ae. albopictus has been encountered in the South of France, and autochthonous cases of Dengue, Chikungunya, and Zika diseases have recently been reported, further highlighting the need for a comprehensive survey of the mosquitoes and their associated viruses in this area. Using high throughput sequencing (HTS) techniques, we report an analysis of the DNA and RNA viral communities of three mosquito species Ae. albopictus, Culex (Cx.) pipiens, and Culiseta (Cs.) longiareolata vectors of human infectious diseases in a small sub-urban city in the South of France. Results revealed the presence of a significant diversity of viruses known to infect bacteria, plants, insects, and mammals. Several novel viruses were detected, including novel members of the Rhabdoviridae, Totiviridae, Iflaviviridae, Circoviridae, and Sobemoviridae families. No sequence related to major zoonotic viruses transmitted by mosquitoes was detected. The use of HTS on arthropod vector populations is a promising strategy for monitoring the emergence and circulation of zoonoses and epizooties. This study is a contribution to the knowledge of the mosquito microbiome.


Assuntos
Culicidae/virologia , Viroma , Vírus/classificação , Animais , Biologia Computacional/métodos , Humanos , Metagenoma , Metagenômica/métodos , Anotação de Sequência Molecular , Mosquitos Vetores/virologia , Filogenia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vírus/genética , Vírus/ultraestrutura
6.
Viruses ; 13(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34372497

RESUMO

While planktonic viruses have received much attention in recent decades, knowledge of the virome of marine organisms, especially fish, still remains rudimentary. This is notably the case with tuna, which are among the most consumed fish worldwide and represent considerable economic, social and nutritional value. Yet the composition of the tuna virome and its biological and environmental determinants remain unknown. To begin to address this gap, we investigated the taxonomic diversity of viral communities inhabiting the skin mucus, gut and liver of two major tropical tuna species (skipjack and yellowfin) in individuals fished in the Atlantic and Indian Oceans. While we found significant differences in the virome composition between the organs, this was totally independent of the tuna species or sex. The tuna virome was mainly dominated by eukaryotic viruses in the digestive organs (gut and liver), while bacteriophages were predominant in the mucus. We observed the presence of specific viral families in each organ, some previously identified as fish or human pathogens (e.g., Iridoviridae, Parvoviridae, Alloherpesviridae, Papillomaviridae). Interestingly, we also detected a 'core virome' that was shared by all the organs and was mainly composed of Caudovirales, Microviridae and Circoviridae. These results show that tuna host a mosaic of viral niches, whose establishment, role and circulation remain to be elucidated.


Assuntos
Clima Tropical , Atum/virologia , Viroma , Vírus/classificação , Vírus/genética , Animais , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Feminino , Microbioma Gastrointestinal , Fígado/virologia , Masculino , Microviridae/classificação , Microviridae/genética , Microviridae/isolamento & purificação , Vírus/isolamento & purificação
7.
Methods Mol Biol ; 1838: 25-36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128987

RESUMO

This chapter proposes a simple, standardized protocol for generating RNA viromes from complex host-associated biological samples of various origins. Compared to other existing protocols to generate RNA viromes, this protocol preserves the infectivity of viral particles and allows for downstream applications such as viral characterization and isolation tests.


Assuntos
Metagenoma , Metagenômica , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Animais , Centrifugação com Gradiente de Concentração , Humanos , Metagenômica/métodos , Infecções por Vírus de RNA/diagnóstico , Vírus de RNA/isolamento & purificação , RNA Viral/genética , RNA Viral/isolamento & purificação , Kit de Reagentes para Diagnóstico , Vírion/genética , Vírion/isolamento & purificação , Zoonoses/diagnóstico , Zoonoses/virologia
8.
ISME J ; 12(4): 1109-1126, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339825

RESUMO

The grazing activity by specific marine organisms represents a growing threat to the survival of many scleractinian species. For example, the recent proliferation of the corallivorous gastropod Drupella now constitutes a critical case in all South-East Asian waters. If the damaging effects caused by this marine snail on coral polyps are relatively well known, the indirect incidence of predation on coral microbial associates is still obscure and might also potentially impair coral health. In this study, we compared the main ecological traits of coral-associated bacterial and viral communities living in the mucus layer of Acropora formosa and Acropora millepora, of healthy and predated individuals (i.e., colonized by Drupella rugosa), in the Bay of Van Phong (Vietnam). Our results show a substantial impact of the gastropod on a variety of microbiological markers. Colonized corals harbored much more abundant and active epibiotic bacteria whose community composition shifted toward more pathogenic taxa (belonging to the Vibrionales, Clostridiales, Campylobacterales, and Alteromonadales orders), together with their specific phages. Viral epibionts were also greatly influenced by Drupella corallivory with spectacular modifications in their concentrations, life strategies, genotype richness, and diversity. Novel and abundant circular Rep-encoding ssDNA viruses (CRESS-DNA viruses) were detected and characterized in grazed corals and we propose that their occurrence may serve as indicator of the coral health status. Finally, our results reveal that corallivory can cause severe dysbiosis by altering virus-bacteria interactions in the mucus layer, and ultimately favoring the development of local opportunistic infections.


Assuntos
Antozoários/microbiologia , Caramujos/fisiologia , Animais , Antozoários/virologia , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Comportamento Predatório , Fenômenos Fisiológicos Virais , Vírus/genética , Vírus/isolamento & purificação
9.
Transbound Emerg Dis ; 64(4): 1159-1167, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26876732

RESUMO

Illegal bushmeat traffic is an important threat to biodiversity conservation of several endangered species and may contribute to the emergence and spread of infectious diseases in humans. The hunting, manipulation and consumption of wildlife-based products, especially those of primate origin, may be a threat to human health; however, few studies have investigated the role of bushmeat trade and consumption as a potential source of human infections to date. In this study, we report the screening of viral pathogens in African simian game seized by French customs at Toulouse Blagnac Airport. Epifluorescence microscopy revealed the presence of virus-like particles in the samples, and further metagenomic sequencing of the DNA and RNA viromes confirmed the presence of sequences related to the Siphoviridae, Myoviridae and Podoviridae bacteriophage families; some of them infecting bacterial hosts that could be potentially pathogenic for humans. To increase the sensitivity of detection, twelve pan-generic PCRs targeting several viral zoonoses were performed, but no positive signal was detected. A large-scale inventory of bacteria, viruses and parasites is urgently needed to globally assess the risk for human health of the trade, manipulation and consumption of wildlife-related bushmeat.


Assuntos
Bacteriófagos/isolamento & purificação , Microbiologia de Alimentos , Haplorrinos/virologia , Carne/virologia , África , Aeroportos , Animais , Bacteriófagos/genética , Comércio , DNA Viral/análise , França , Genoma Viral , Programas de Rastreamento , Metagenoma , Microscopia de Fluorescência , RNA Viral/análise
10.
Viruses ; 8(3): 77, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26978389

RESUMO

More than two thirds of emerging viruses are of zoonotic origin, and among them RNA viruses represent the majority. Ceratopogonidae (genus Culicoides) are well-known vectors of several viruses responsible for epizooties (bluetongue, epizootic haemorrhagic disease, etc.). They are also vectors of the only known virus infecting humans: the Oropouche virus. Female midges usually feed on a variety of hosts, leading to possible transmission of emerging viruses from animals to humans. In this context, we report here the analysis of RNA viral communities of Senegalese biting midges using next-generation sequencing techniques as a preliminary step toward the identification of potential viral biohazards. Sequencing of the RNA virome of three pools of Culicoides revealed the presence of a significant diversity of viruses infecting plants, insects and mammals. Several novel viruses were detected, including a novel Thogotovirus species, related but genetically distant from previously described tick-borne thogotoviruses. Novel rhabdoviruses were also detected, possibly constituting a novel Rhabdoviridae genus, and putatively restricted to insects. Sequences related to the major viruses transmitted by Culicoides, i.e., African horse sickness, bluetongue and epizootic haemorrhagic disease viruses were also detected. This study highlights the interest in monitoring the emergence and circulation of zoonoses and epizooties using their arthropod vectors.


Assuntos
Biota , Ceratopogonidae/virologia , Vetores de Doenças , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Senegal
11.
PLoS One ; 10(10): e0139810, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431175

RESUMO

BACKGROUND: Metagenomic analyses have been widely used in the last decade to describe viral communities in various environments or to identify the etiology of human, animal, and plant pathologies. Here, we present a simple and standardized protocol that allows for the purification and sequencing of RNA viromes from complex biological samples with an important reduction of host DNA and RNA contaminants, while preserving the infectivity of viral particles. PRINCIPAL FINDINGS: We evaluated different viral purification steps, random reverse transcriptions and sequence-independent amplifications of a pool of representative RNA viruses. Viruses remained infectious after the purification process. We then validated the protocol by sequencing the RNA virome of human body lice engorged in vitro with artificially contaminated human blood. The full genomes of the most abundant viruses absorbed by the lice during the blood meal were successfully sequenced. Interestingly, random amplifications differed in the genome coverage of segmented RNA viruses. Moreover, the majority of reads were taxonomically identified, and only 7-15% of all reads were classified as "unknown", depending on the random amplification method. CONCLUSION: The protocol reported here could easily be applied to generate RNA viral metagenomes from complex biological samples of different origins. Our protocol allows further virological characterizations of the described viral communities because it preserves the infectivity of viral particles and allows for the isolation of viruses.


Assuntos
Metagenômica , RNA Viral/genética
12.
Front Microbiol ; 6: 1406, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733117

RESUMO

Faustovirus, a new Asfarviridae-related giant virus, was recently isolated in Vermamoeba vermiformis, a protist found in sewage water in various geographical locations and occasionally reported in human eye infection cases. As part of a global metagenomic analysis of viral communities existing in biting midges, we report here for the first time the identification and isolation of a Faustovirus-like virus in hematophagous arthropods and its detection in their animal hosts. The DNA virome analysis of three pools of Culicoides sp., engorged female Culicoides imicola and non-engorged male/female C. imicola biting midges collected in Senegal, revealed the presence of amoeba-infecting giant viruses and, among them, a majority of sequences related to Faustovirus. Phylogenetic analyses conducted on several structural genes of Faustovirus confirmed the clustering of the arthropod-borne Faustovirus with sewage-borne Faustoviruses, with a distinct geographical clustering of Senegalese Faustovirus strains. Transmission electron microscopy identified viral particles with morphologies and diameters which were compatible with Faustovirus. The presence of infectious arthropod-borne Faustovirus was finally confirmed by successful isolation on V. vermiformis amoeba. Global proteomic analysis of biting midges identified that arthropods' blood meal originating from cattle, rodents and humans. Further screening of cattle sera and rodent tissue resulted in prevalence of Faustovirus being estimated at 38% in rodents and 14% in cattle, suggesting a possible origin of Faustovirus presence in arthropods via the ingestion of contaminated blood meal. Viral loads were the highest in rodents' urine and kidney samples, suggesting a possible excretion of viral particles into the environment. Faustovirus DNA polymerase-related sequences were also detected in more than 9 and 11% of febrile patients and healthy Senegalese human sera, respectively. Our study thus, highlights the need to investigate the role of arthropods, wildlife, and domestic animals in the lifecycle of amoeba-infecting giant viruses and, in particular, the environmental cycle of Faustovirus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA