RESUMO
Fungi are used for the production of several compounds and the efficiency of biotechnological processes is directly related to the metabolic activity of these microorganisms. The reactions catalyzed by lignocellulolytic enzymes are oxidative and generate reactive oxygen species (ROS). Excess of ROS can cause serious damages to cells, including cell death. Thus, the objective of this work was to evaluate the lignocellulolytic enzymes produced by Pleurotus sajor-caju CCB020, Phanerochaete chrysosporium ATCC 28326, Trichoderma reesei RUT-C30, and Aspergillus niger IZ-9 grown in sugarcane bagasse and two yeast extract (YE) concentrations and characterize the antioxidant defense system of fungal cells by the activities of superoxide dismutase (SOD) and catalase (CAT). Pleurotus sajor-caju exhibited the highest activities of laccase and peroxidase in sugarcane bagasse with 2.6 g of YE and an increased activity of manganese peroxidase in sugarcane bagasse with 1.3 g of YE was observed. However, P. chrysosporium showed the highest activities of exoglucanase and endoglucanase in sugarcane bagasse with 1.3 g of YE. Lipid peroxidation and variations in SOD and CAT activities were observed during the production of lignocellulolytic enzymes and depending on the YE concentrations. The antioxidant defense system was induced in response to the oxidative stress caused by imbalances between the production and the detoxification of ROS.
Assuntos
Antioxidantes/análise , Ascomicetos/enzimologia , Ascomicetos/metabolismo , Basidiomycota/enzimologia , Basidiomycota/metabolismo , Hidrolases/metabolismo , Lignina/metabolismo , Catalase/análise , Celulose/metabolismo , Fermentação , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade , Saccharum/metabolismo , Superóxido Dismutase/análiseRESUMO
The increasing production and use of nanomaterials is causing serious concerns about their safety to human and environmental health. However, the applications of titanium dioxide nanoparticles (TiO2NP) and multiwalled carbon nanotubes (MWCNT) hybrids has grown considerably, due to their enhanced photocatalytic efficiency. To our knowledge, there are no reports available to the scientific community about their toxicity. In this work, we perform a toxicity assessment of TiO2NP and TiO2-MWCNT nanohybrid materials using Zebrafish embryos standardized 96â¯h early life stage assay, under different exposure conditions (with and without UV light exposure). After exposure the parameters assessed were acute toxicity, hatching rate, growth, yolk sac size, and sarcomere length. In addition, µ-probe X-ray fluorescence spectroscopy (µ-XRF) was employed to observe if nanoparticles were uptaken by zebrafish embryos and consequently accumulated in their organisms. Neither TiO2NP nor TiO2-MWCNT nanohybrids presented acute toxicity to the zebrafish embryos. Moreover, TiO2NP presents sublethal effects for total length (with and without UV light exposure) on the embryos. This work contributes to the understanding of the potential adverse effects of the emerging nanohybrid materials towards safe innovation approaches in nanotechnology.
Assuntos
Embrião não Mamífero/efeitos dos fármacos , Nanopartículas/toxicidade , Nanotubos de Carbono/toxicidade , Titânio/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Humanos , Nanotecnologia , Processos Fotoquímicos , Sarcômeros/efeitos dos fármacos , Espectrometria por Raios X , Raios Ultravioleta , Peixe-Zebra/embriologiaRESUMO
Titanium dioxide nanoparticles-multiwalled carbon nanotubes (TiO2-MWCNT) nanohydrid has an enhanced photocatalytic activity across the visible light with promising applications in environmental remediation, solar energy devices and antimicrobial technologies. However, it is necessary to evaluate the toxicological effects of TiO2-MWCNT towards safe and sustainable development of nanohybrids. In this work, we studied the cytotoxicity, protein corona formation and cellular internalisation of TiO2-MWCNT on fibroblasts derived from gonadal rainbow trout tissue (RTG-2) for the first time. This nanohydrid did not show any toxicity effect on RTG-2 cells up to 100 mg L-1 after 24 h of exposure as monitored by alamar blue, neutral red and trypan blue assays (in presence or absence of foetal bovine serum, FBS). Futhermore, cryo-transmission electron microscopy analysis demonstrated that TiO2 particles is attached on nanotube surface after FBS-protein corona formation in cell culture medium. Raman spectroscopy imaging showed that TiO2-MWCNT can be internalised by RTG-2 cells. This work is a novel contribution towards better understanding the nanobiointeractions of nanohydrids linked to their in vitro effects on fish cells in aquatic nanoecotoxicology.
Assuntos
Nanopartículas , Nanotubos de Carbono , Coroa de Proteína , Poluentes Químicos da Água , Animais , Coroa de Proteína/química , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Poluentes Químicos da Água/toxicidade , Linhagem Celular , Nanopartículas/toxicidade , Peixes , Titânio/toxicidade , Titânio/químicaRESUMO
Ionic liquids (ILs), also known as liquid electrolytes, are powerful solvents with a wide variety of academic and industrial applications. Bioassays with aquatic organisms constitute an effective tool for the evaluation of ILs' toxicity, as well as for the prediction and identification of possible moieties that act as toxicophores. In this work, the acute toxicity of six ILs and two commonly used organic solvents was evaluated using freshwater organisms: Daphnia magna, Raphidocelis subcapitata and Hydra attenuata. The bioassays were performed by exposing the organisms to increasing concentrations of the ILs and observing D. magna immobilization, R. subcapitata growth inhibition, and the morphological or mortality effects in H. attenuata. The results demonstrate that the tested organisms are not equally susceptible to the ILs, e.g., bmpyr [BF4] was the least toxic compound for R. subcapitata, N1,1 [N1,1,1OOH] for D. magna and emim [Tf2N] for H. attenuata. This highlights the importance of applying a battery of assays in toxicological analysis. Additionally, Hydra proved to be the most tolerant species to the tested ILs. According to their hazard rankings, the tested ILs are considered practically harmless or moderately toxic, except (Hex)3(TDec)P [Cl], which was classified as highly toxic. The ILs were revealed to be more harmful to aquatic systems than the tested organic solvents, reaffirming the need to analyze carefully the (eco)toxicological impact of these compounds. The present study provides additional data in the evaluation of the potential hazard and the impact of ILs in the environment.