Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 242(1): 39-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25809153

RESUMO

MAIN CONCLUSION: A fungal gene encoding a transcription factor is expressed from its own promoter in Arabidopsis phloem and improves drought tolerance by reducing transpiration and increasing osmotic potential. Horizontal gene transfer from unrelated organisms has occurred in the course of plant evolution, suggesting that some foreign genes may be useful to plants. The CtHSR1 gene, previously isolated from the halophytic yeast Candida tropicalis, encodes a heat-shock transcription factor-related protein. CtHSR1, with expression driven by its own promoter or by the Arabidopsis UBQ10 promoter, was introduced into the model plant Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation and the resulting transgenic plants were more tolerant to drought than controls. Fusions of the CtHSR1 promoter with ß-glucuronidase reporter gene indicated that this fungal promoter drives expression to phloem tissues. A chimera of CtHSR1 and green fluorescence protein is localized at the cell nucleus. The physiological mechanism of drought tolerance in transgenic plants is based on reduced transpiration (which correlates with decreased opening of stomata and increased levels of jasmonic acid) and increased osmotic potential (which correlates with increased proline accumulation). Transcriptomic analysis indicates that the CtHSR1 transgenic plants overexpressed a hundred of genes, including many relevant to stress defense such as LOX4 (involved in jasmonic acid synthesis) and P5CS1 (involved in proline biosynthesis). The promoters of the induced genes were enriched in upstream activating sequences for water stress induction. These results demonstrate that genes from unrelated organisms can have functional expression in plants from its own promoter and expand the possibilities of useful transgenes for plant biotechnology.


Assuntos
Adaptação Fisiológica , Arabidopsis/fisiologia , Candida/genética , Secas , Proteínas Fúngicas/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Arabidopsis/genética , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Fúngicos , Proteínas de Fluorescência Verde/metabolismo , Motivos de Nucleotídeos/genética , Floema/genética , Fotossíntese , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Prolina/metabolismo , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética
2.
Biochem J ; 441(1): 255-64, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21919885

RESUMO

Intracellular pH conditions many cellular systems, but its mechanisms of regulation and perception are mostly unknown. We have identified two yeast genes important for tolerance to intracellular acidification caused by weak permeable acids. One corresponded to LEU2 and functions by removing the dependency of the leu2 mutant host strain on uptake of extracellular leucine. Leucine transport is inhibited by intracellular acidification, and either leucine oversupplementation or overexpression of the transporter gene BAP2 improved acid growth. Another acid-tolerance gene is GCN2, encoding a protein kinase activated by uncharged tRNAs during amino acid starvation. Gcn2 phosphorylates eIF2α (eukaryotic initiation factor 2α) (Sui2) at Ser51 and this inhibits general translation, but activates that of Gcn4, a transcription factor for amino acid biosynthetic genes. Intracellular acidification activates Gcn2 probably by inhibition of aminoacyl-tRNA synthetases because we observed accumulation of uncharged tRNAleu without leucine depletion. Gcn2 is required for leucine transport and a gcn2-null mutant is sensitive to acid stress if auxotrophic for leucine. Gcn4 is required for neither leucine transport nor acid tolerance, but a S51A sui2 mutant is acid-sensitive. This suggests that Gcn2, by phosphorylating eIF2α, may activate translation of an unknown regulator of amino acid transporters different from Gcn4.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Estresse Fisiológico/fisiologia , Ácido Acético , Adaptação Fisiológica , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Homeostase , Concentração de Íons de Hidrogênio , Leucina/metabolismo , Mutação , Plasmídeos , Proteínas Serina-Treonina Quinases/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Yeast ; 27(9): 713-25, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20213854

RESUMO

Glucose, in the absence of additional nutrients, induces programmed cell death in yeast. This phenomenon is independent of yeast metacaspase (Mca1/Yca1) and of calcineurin, requires ROS production and it is concomitant with loss of cellular K(+) and vacuolar collapse. K(+) is a key nutrient protecting the cells and this effect depends on the Trk1 uptake system and is associated with reduced ROS production. Mutants with decreased activity of plasma membrane H(+)-ATPase are more tolerant to glucose-induced cell death and exhibit less ROS production. A triple mutant ena1-4 tok1 nha1, devoid of K(+) efflux systems, is more tolerant to both glucose- and H(2)O(2)-induced cell death. We hypothesize that ROS production, activated by glucose and H(+)-ATPase and inhibited by K(+) uptake, triggers leakage of K(+), a process favoured by K(+) efflux systems. Loss of cytosolic K(+) probably causes osmotic lysis of vacuoles. The nature of the ROS-producing system sensitive to K(+) and H(+) transport is unknown.


Assuntos
Morte Celular , Glucose/toxicidade , Peróxido de Hidrogênio/toxicidade , Hidrogênio/metabolismo , Potássio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Transporte de Cátions/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Pressão Osmótica , Espécies Reativas de Oxigênio/toxicidade , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
FEBS Lett ; 591(13): 1993-2002, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28486745

RESUMO

We have identified in yeast a connection between two master regulators of cell growth: a biochemical connection involving the TORC1 protein kinase (which activates protein synthesis, nutrient uptake, and anabolism) and a biophysical connection involving the plasma membrane proton-pumping H+ -ATPase Pma1 (which drives nutrient and K+ uptake and regulates pH homeostasis). Raising the temperature to nonpermissive values in a TOR thermosensitive mutant decreases Pma1 activity. Rapamycin, a TORC1 inhibitor, inhibits Pma1 dependent on its receptor Fpr1 and on the protein phosphatase Sit4, a TORC1 effector. Mutation of either Sit4 or Tco89, a nonessential subunit of TORC1, decreases proton efflux, K+ uptake, intracellular pH, cell growth, and tolerance to weak organic acids. Tco89 does not affect Pma1 activity but activates K+ transport.


Assuntos
Membrana Celular/metabolismo , Homeostase , Complexos Multiproteicos/metabolismo , Potássio/metabolismo , Bombas de Próton/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transporte Biológico , Concentração de Íons de Hidrogênio , Espaço Intracelular/química , Alvo Mecanístico do Complexo 1 de Rapamicina , Mutação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Planta ; 217(3): 417-24, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14520568

RESUMO

Treatment of tobacco ( Nicotiana tabacum L.) plants with lithium induces the formation of necrotic lesions and leaf curling as in the case of incompatible pathogen interactions. Further similarities at the molecular level include accumulation of ethylene and of salicylic and gentisic acids, and induced expression of pathogenesis-related PR-P, PR5 and PR1 genes. With the exception of PR1 induction, lithium produced the same effects in transgenic tobacco plants that do not accumulate salicylate because of overexpression of the bacterial hydroxylase gene nahG. On the other hand, inhibition of ethylene biosynthesis with aminoethoxyvinylglycine prevented lithium-induced cell death and PR5 expression. These results suggest that lithium triggers a hypersensitive-like response where ethylene signalling is essential.


Assuntos
Apoptose/efeitos dos fármacos , Lítio/farmacologia , Nicotiana/efeitos dos fármacos , Proteínas de Plantas/genética , Etilenos/metabolismo , Gentisatos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA