RESUMO
Invasive nonnative plant pests can cause extensive environmental and economic damage and are very difficult to eradicate once established. Phytosanitary inspections that aim to prevent biological invasions by limiting movement of nonnative plant pests across borders are a critical component of the biosecurity continuum. Inspections can also provide valuable information about when and where plant pests are crossing national boundaries. However, only a limited portion of the massive volume of goods imported daily can be inspected, necessitating a highly targeted, risk-based strategy. Furthermore, since inspections must prioritize detection and efficiency, their outcomes generally cannot be used to make inferences about risk for cargo pathways as a whole. Phytosanitary agencies need better tools for quantifying pests going undetected and designing risk-based inspection strategies appropriate for changing operational conditions. In this research, we present PoPS (Pest or Pathogen Spread) Border, an open-source consignment inspection simulator for measuring inspection outcomes under various cargo contamination scenarios to support recommendations for inspection protocols and estimate pest slippage rates. We used the tool to estimate contamination rates of historical interception data, quantify tradeoffs in effectiveness and workload for inspection strategies, and identify vulnerabilities in sampling protocols as changes in cargo configurations and contamination occur. These use cases demonstrate how this simulation approach permits testing inspection strategies and measuring quantities that would otherwise be impossible in a field-based setting. This work represents the first steps toward a decision support tool for creating dynamic inspection protocols that respond to changes in available resources, workload, and commerce trends.
RESUMO
Non-native pests and diseases pose a risk of economic and environmental damage to managed and natural U.S. forests and agriculture. The U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) Plant Protection and Quarantine (PPQ) protects the health of U.S. agriculture and natural resources against invasive pests and diseases through efforts to prevent the entry, establishment, and spread of non-native pests and diseases. Because each pest or disease has its own idiosyncratic characteristics, analyzing risk is highly complex. To help PPQ better respond to pest and disease threats, we developed the Spatial Analytic Framework for Advanced Risk Information Systems (SAFARIS), an integrated system designed to provide a seamless environment for producing predictive models. SAFARIS integrates pest biology information, climate and non-climate data drivers, and predictive models to provide users with readily accessible and easily customizable tools to analyze pest and disease risks. The phenology prediction models, spread forecasting models, and other climate-based analytical tools in SAFARIS help users understand which areas are suitable for establishment, when surveys would be most fruitful, and aid in other analyses that inform decision-making, operational efforts, and rapid response. Here we introduce the components of SAFARIS and provide two use cases demonstrating how pest-specific models developed with SAFARIS tools support PPQ in its mission. Although SAFARIS is designed to address the needs of PPQ, the flexible, web-based framework is publicly available, allowing any user to leverage the available data and tools to model pest and disease risks.