RESUMO
Online social media foster the creation of active communities around shared narratives. Such communities may turn into incubators for conspiracy theories-some spreading violent messages that could sharpen the debate and potentially harm society. To face these phenomena, most social media platforms implemented moderation policies, ranging from posting warning labels up to deplatforming, i.e. permanently banning users. Assessing the effectiveness of content moderation is crucial for balancing societal safety while preserving the right to free speech. In this article, we compare the shift in behavior of users affected by the ban of two large communities on Reddit, GreatAwakening and FatPeopleHate, which were dedicated to spreading the QAnon conspiracy and body-shaming individuals, respectively. Following the ban, both communities partially migrated to Voat, an unmoderated Reddit clone. We estimate how many users migrate, finding that users in the conspiracy community are much more likely to leave Reddit altogether and join Voat. Then, we quantify the behavioral shift within Reddit and across Reddit and Voat by matching common users. While in general the activity of users is lower on the new platform, GreatAwakening users who decided to completely leave Reddit maintain a similar level of activity on Voat. Toxicity strongly increases on Voat in both communities. Finally, conspiracy users migrating from Reddit tend to recreate their previous social network on Voat. Our findings suggest that banning conspiracy communities hosting violent content should be carefully designed, as these communities may be more resilient to deplatforming.
RESUMO
Agent-Based Models (ABMs) are used in several fields to study the evolution of complex systems from micro-level assumptions. However, a significant drawback of ABMs is their inability to estimate agent-specific (or "micro") variables, which hinders their ability to make accurate predictions using micro-level data. In this paper, we propose a protocol to learn the latent micro-variables of an ABM from data. We begin by translating an ABM into a probabilistic model characterized by a computationally tractable likelihood. Next, we use a gradient-based expectation maximization algorithm to maximize the likelihood of the latent variables. We showcase the efficacy of our protocol on an ABM of the housing market, where agents with different incomes bid higher prices to live in high-income neighborhoods. Our protocol produces accurate estimates of the latent variables while preserving the general behavior of the ABM. Moreover, our estimates substantially improve the out-of-sample forecasting capabilities of the ABM compared to simpler heuristics. Our protocol encourages modelers to articulate assumptions, consider the inferential process, and spot potential identification problems, thus making it a useful alternative to black-box data assimilation methods.
RESUMO
Which messages are more effective at inducing a change of opinion in the listener? We approach this question within the frame of Habermas' theory of communicative action, which posits that the illocutionary intent of the message (its pragmatic meaning) is the key. Thanks to recent advances in natural language processing, we are able to operationalize this theory by extracting the latent social dimensions of a message, namely archetypes of social intent of language, that come from social exchange theory. We identify key ingredients to opinion change by looking at more than 46k posts and more than 3.5M comments on Reddit's r/ChangeMyView, a debate forum where people try to change each other's opinion and explicitly mark opinion-changing comments with a special flag called delta. Comments that express no intent are about 77% less likely to change the mind of the recipient, compared to comments that convey at least one social dimension. Among the various social dimensions, the ones that are most likely to produce an opinion change are knowledge, similarity, and trust, which resonates with Habermas' theory of communicative action. We also find other new important dimensions, such as appeals to power or empathetic expressions of support. Finally, in line with theories of constructive conflict, yet contrary to the popular characterization of conflict as the bane of modern social media, our findings show that voicing conflict in the context of a structured public debate can promote integration, especially when it is used to counter another conflictive stance. By leveraging recent advances in natural language processing, our work provides an empirical framework for Habermas' theory, finds concrete examples of its effects in the wild, and suggests its possible extension with a more faceted understanding of intent interpreted as social dimensions of language.
Assuntos
Mídias Sociais , Humanos , Comunicação , Idioma , Atitude , ConfiançaRESUMO
Echo chambers in online social networks, whereby users' beliefs are reinforced by interactions with like-minded peers and insulation from others' points of view, have been decried as a cause of political polarization. Here, we investigate their role in the debate around the 2016 US elections on Reddit, a fundamental platform for the success of Donald Trump. We identify Trump vs Clinton supporters and reconstruct their political interaction network. We observe a preference for cross-cutting political interactions between the two communities rather than within-group interactions, thus contradicting the echo chamber narrative. Furthermore, these interactions are asymmetrical: Clinton supporters are particularly eager to answer comments by Trump supporters. Beside asymmetric heterophily, users show assortative behavior for activity, and disassortative, asymmetric behavior for popularity. Our findings are tested against a null model of random interactions, by using two different approaches: a network rewiring which preserves the activity of nodes, and a logit regression which takes into account possible confounding factors. Finally, we explore possible socio-demographic implications. Users show a tendency for geographical homophily and a small positive correlation between cross-interactions and voter abstention. Our findings shed light on public opinion formation on social media, calling for a better understanding of the social dynamics at play in this context.