Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Extremophiles ; 16(6): 805-17, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23065059

RESUMO

Extremophilic anaerobes are widespread in saline, acid, alkaline, and high or low temperature environments. Carbon is essential to living organisms and its fixation, degradation, or mineralization is driven by, up to now, six metabolic pathways. Organisms using these metabolisms are known as autotrophs, acetotrophs or carbon mineralizers, respectively. In anoxic and extreme environments, besides the well-studied Calvin-Benson-Bassham cycle, there are other five carbon fixation pathways responsible of autotrophy. Moreover, regarding carbon mineralization, two pathways perform this key process for carbon cycling. We might imagine that all the pathways can be found evenly distributed in microbial biotopes; however, in extreme environments, this does not occur. This manuscript reviews the most commonly reported anaerobic organisms that fix carbon and mineralize acetate in extreme anoxic habitats. Additionally, an inventory of autotrophic extremophiles by biotope is presented.


Assuntos
Acetatos/metabolismo , Bactérias Anaeróbias/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Anaerobiose , Bactérias Anaeróbias/genética , Ecossistema , Redes e Vias Metabólicas , Filogenia
2.
Aquat Biosyst ; 9(1): 19, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24083554

RESUMO

BACKGROUND: The aim was to study the seasonal microbial diversity variations of an athalassohaline environment with a high concentration of sulfates in Tirez lagoon (La Mancha, Spain). Despite the interest in these types of environments there is scarce information about their microbial ecology, especially on their anoxic sediments. RESULTS: We report the seasonal microbial diversity of the water column and the sediments of a highly sulfated lagoon using both molecular and conventional microbiological methods. Algae and Cyanobacteria were the main photosynthetic primary producers detected in the ecosystem in the rainy season. Also dinoflagelates and filamentous fungi were identified in the brines. The highest phylotype abundance in water and sediments corresponded to members of the bacterial phylum Proteobacteria, mainly of the Gamma- and Alphaproteobacteria classes. Firmicutes and Actinobacteria were isolated and identified in Tirez brines and sediment samples. Halophilic sulfate reducing Deltaproteobacteria were also detected (Desulfohalobium). CONCLUSIONS: Important differences have been found in the microbial diversity present in the Tirez water column and the sediments between the wet and dry seasons. Also the Tirez lagoon showed a high richness of the bacterial Alpha- and Deltaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and for the archaeal Euryarchaeota.

3.
Int J Microbiol ; 2011: 753758, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915180

RESUMO

Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP) prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5'-phosphosulfate (APS) reductase α (aprA) and methyl coenzyme M reductase α (mcrA) gene markers were amplified given that both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococcaceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible "salt-in" signal in SRP and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.

4.
Orig Life Evol Biosph ; 37(3): 287-95, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17361321

RESUMO

Europa's chaos and lenticulae features may have originated by thermal diapirs related to convective plumes. Warm ice plumes could be habitable, since their temperature is close to the ice melting temperature. Moreover, thermal plumes intruding into the lower stagnant lid warm several kilometers of country ice above 230 K for periods of 10(5) years, and hundreds of meters above 240 K for periods of 10(4) years. Diapir coalescence generating chaos areas should provide a large zone with temperature above approximately 240 K for thousands of years. A temperature above approximately 230 K is potentially interesting for astrobiology, since it corresponds to the lowest temperature at which microbial metabolic activity in Antarctic ice has been reported. So, the warming by thermal plumes could cause an aureole of biological activation/reactivation in the country ice. Adaptation of life to either high salinity or low temperature is similar: it requires the synthesis of compatible solutes, like trehalose or glycerol, which are efficient cryoprotectants. We therefore propose that the future astrobiological exploration of Europa should include the search for compatible solutes in chaos and lenticulae features.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno , Júpiter , Origem da Vida , Temperatura , Adaptação Biológica/fisiologia , Convecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA