Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 44(5): 451-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24397717

RESUMO

Recently, application of ionic liquids (ILs) has received much attention due to their special solvency properties as a promising method of pretreatment for lignocellulosic biomass. Easy recovery of ionic liquids, chemical stability, temperature stability, nonflammability, low vapor pressure, and wide liquidus range are among those unique properties. These solvents are also known as green solvents due to their low vapor pressure. The present study was set to compare the effect of five different ILs, namely, 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]), 1-ethyl-3-methyl imidazolium diethyl phosphate ([EMIM][DEP]), 1-allyl-3-methylimidazolium chloride ([AMIM][Cl]), and 1-ethyl-3-methylimidazolium-hydrogen sulfate ([EMIM][HSO4]), on corn stover in a bioethanol production process. The performance of ILs was evaluated based on the change observed in chemical structure, crystallinity index, cellulose digestibility, and glucose release. Overall, [EMIM][Ac]-pretreated corn stover led to significantly higher saccharification, with cellulose digestibility reaching 69% after 72 hr, whereas digestibility of untreated barley straw was measured at only 21%.


Assuntos
Celulose/metabolismo , Glucose/metabolismo , Líquidos Iônicos/metabolismo , Zea mays/metabolismo , Compostos Alílicos/metabolismo , Aspergillus niger/enzimologia , Biotecnologia/métodos , Celulase/metabolismo , Imidazóis/metabolismo , Organofosfatos/metabolismo , Trichoderma/enzimologia , beta-Glucosidase/metabolismo
2.
Chemosphere ; 240: 124889, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31563102

RESUMO

This study explores the use of an engineered char produced from the pyrolysis of anaerobically digested fiber (ADF) to adsorb phosphate from aqueous solutions. Two series of engineered chars were produced. The first series was a CO2 activated (CA) char produced via slow pyrolysis between 350 and 750 °C. The second series was a nitrogen doped (ND) char activated in the presence of ammonia at comparable temperatures. Proximate analysis, elemental composition, gas physisorption, Inductively coupled plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray powder diffraction (XRD) techniques were used to characterize properties of resulting products. The surface area of the carbon product increased after nitrogen doping through ammonization (166.6-463.1 m2/g) compared to CO2 activated chars (156.5-413.1 m2/g). Phosphate adsorption isotherms for both CO2 activated and nitrogen doped chars can be described by the Langmuir- Freundlich and Redlich Peterson adsorption models. Nitrogen doped carbon phosphate sorption capacity in aqueous solutions was twice compared to CO2 activated carbons. As carbonization/activation temperature increased the sorption capacity increased from 3.4 to 33.3 mg g-1 for CA char and 6.3-63.1 mg g-1 for nitrogen doped char.


Assuntos
Carvão Vegetal/química , Nitrogênio/química , Fosfatos/análise , Fosfatos/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação
3.
Bioresour Technol ; 318: 124063, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32905948

RESUMO

Biochar modified with calcium source is acted as an effective adsorbent for phosphorous recovery. In this research, eggshell is used as a low-cost and environmentally friendly calcium source to replace chemical reagents such as CaCO3, Ca(OH)2 and CaCl2 used in the modified biochar production. Biochar derived from rape straw and modified with eggshell shows prominent phosphorous adsorption performance (e.g., equilibrium adsorption amount, 109.7 mg/g). The kinetic and isotherm analysis demonstrate that chemical adsorption process is performed as the main controlled step for the modified biochar adsorption, and the phosphate adsorption process is composed of both monolayer adsorption and multi-layer adsorption. Moreover, it is found from the physicochemical structures comparison before and after phosphate adsorption that Ca-P precipitation, hydrogen bonding and electrostatic attraction are identified as main adsorption mechanisms. In addition, the adsorbed phosphates are mainly distributed inside the space with pore sizes of 15-50 nm.


Assuntos
Cálcio , Poluentes Químicos da Água , Adsorção , Animais , Carvão Vegetal , Casca de Ovo/química , Cinética , Poluentes Químicos da Água/análise
4.
3 Biotech ; 3(5): 399-406, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28324337

RESUMO

Recently, application of ionic liquids due to their special solvency properties as a promising method of pretreatment for lignocellulosic biomass has received much attention. Chemical stability, temperature stability, non-flammability, low vapor pressure, wide liquidus range, and non-toxicity are among those unique properties. These solvents are also known as green solvents due to non-toxicity and low vapor pressure. The present study was set to compare the effect of five different ionic liquids namely, 1-ethyl-3-methyl imidazolium acetate, 1-ethyl-3-methyl imidazolium diethyl phosphate, 1-butyl-3-methyl imidazolium chlorides, 1,3-dimethyl imidazolium dimethyl phosphate, and 1-butyl-3-methylimidazolium-trifluoromethane sulfonate on barley straw in bioethanol production process. The performance of ionic liquids was evaluated based on the change observed in chemical structure, crystallinity index, and cellulose digestibility. Overall, 1-ethyl-3-methyl imidazolium acetate was found most effective in pretreating barely straw for bioethanol production. To the best of our knowledge, the present study reports different ionic liquids; some for the first time, for barely straw pretreatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA