Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(29): e2200206119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858339

RESUMO

Human papillomaviruses (HPVs) infect the basal proliferating cells of the stratified epithelium, but the productive phase of the life cycle (consisting of viral genome amplification, late gene expression, and virion assembly) is restricted to the highly differentiated suprabasal cells. While much is known regarding the mechanisms that HPVs use to block activation of an innate immune response in undifferentiated cells, little is known concerning how HPV prevents an interferon (IFN) response upon differentiation. Here, we demonstrate that high-risk HPVs hijack a natural function of apoptotic caspases to suppress an IFN response in differentiating epithelial cells. We show that caspase inhibition results in the secretion of type I and type III IFNs that can act in a paracrine manner to induce expression of interferon-stimulated genes (ISGs) and block productive replication of HPV31. Importantly, we demonstrate that the expression of IFNs is triggered by the melanoma differentiation-associated gene 5 (MDA5)-mitochondrial antiviral-signaling protein (MAVS)-TBK1 (TANK-binding kinase 1) pathway, signifying a response to double-stranded RNA (dsRNA). Additionally, we identify a role for MDA5 and MAVS in restricting productive viral replication during the normal HPV life cycle. This study identifies a mechanism by which HPV reprograms the cellular environment of differentiating cells through caspase activation, co-opting a nondeath function of proteins normally involved in apoptosis to block antiviral signaling and promote viral replication.


Assuntos
Caspases , Papillomavirus Humano 31 , Helicase IFIH1 Induzida por Interferon , Interferons , Infecções por Papillomavirus , Replicação Viral , Caspases/metabolismo , Papillomavirus Humano 31/fisiologia , Humanos , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/metabolismo , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia
2.
J Virol ; 97(5): e0020123, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37154769

RESUMO

The human papillomavirus (HPV) life cycle takes place in the stratified epithelium, with the productive phase being activated by epithelial differentiation. The HPV genome is histone-associated, and the life cycle is epigenetically regulated, in part, by histone tail modifications that facilitate the recruitment of DNA repair factors that are required for viral replication. We previously showed that the SETD2 methyltransferase facilitates the productive replication of HPV31 through the trimethylation of H3K36 on viral chromatin. SETD2 regulates numerous cellular processes, including DNA repair via homologous recombination (HR) and alternative splicing, through the recruitment of various effectors to histone H3 lysine 36 trimethylation (H3K36me3). We previously demonstrated that the HR factor Rad51 is recruited to HPV31 genomes and is required for productive replication; however, the mechanism of Rad51 recruitment has not been defined. SET domain containing 2 (SETD2) promotes the HR repair of double-strand breaks (DSBs) in actively transcribed genes through the recruitment of carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) to lens epithelium-derived growth factor (LEDGF)-bound H3K36me3, which promotes DNA end resection and thereby allows for the recruitment of Rad51 to damaged sites. In this study, we found that reducing H3K36me3 through the depletion of SETD2 or the overexpression of an H3.3K36M mutant leads to an increase in γH2AX, which is a marker of damage, on viral DNA upon epithelial differentiation. This is coincident with decreased Rad51 binding. Additionally, LEDGF and CtIP are bound to HPV DNA in a SETD2-dependent and H3K36me3-dependent manner, and they are required for productive replication. Furthermore, CtIP depletion increases DNA damage on viral DNA and blocks Rad51 recruitment upon differentiation. Overall, these studies indicate that H3K36me3 enrichment on transcriptionally active viral genes promotes the rapid repair of viral DNA upon differentiation through the LEDGF-CtIP-Rad51 axis. IMPORTANCE The productive phase of the HPV life cycle is restricted to the differentiating cells of the stratified epithelium. The HPV genome is histone-associated and subject to epigenetic regulation, though the manner in which epigenetic modifications contribute to productive replication is largely undefined. In this study, we demonstrate that SETD2-mediated H3K36me3 on HPV31 chromatin promotes productive replication through the repair of damaged DNA. We show that SETD2 facilitates the recruitment of the homologous recombination repair factors CtIP and Rad51 to viral DNA through LEDGF binding to H3K36me3. CtIP is recruited to damaged viral DNA upon differentiation, and, in turn, recruits Rad51. This likely occurs through the end resection of double-strand breaks. SETD2 trimethylates H3K36me3 during transcription, and active transcription is necessary for Rad51 recruitment to viral DNA. We propose that the enrichment of SETD2-mediated H3K36me3 on transcriptionally active viral genes upon differentiation facilitates the repair of damaged viral DNA during the productive phase of the viral life cycle.


Assuntos
Histonas , Infecções por Papillomavirus , Humanos , Histonas/genética , Histonas/metabolismo , Epigênese Genética , DNA Viral , Infecções por Papillomavirus/genética , Cromatina/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(39): 19552-19562, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501315

RESUMO

High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell's DNA replication and repair machineries to replicate their own genomes. How this host-pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.


Assuntos
Quebras de DNA de Cadeia Dupla , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Feminino , Instabilidade Genômica , Recombinação Homóloga , Interações Hospedeiro-Patógeno , Humanos , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Neoplasias do Colo do Útero/virologia
4.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30355682

RESUMO

The inactivation of critical cell cycle checkpoints by the human papillomavirus (HPV) oncoprotein E7 results in replication stress (RS) that leads to genomic instability in premalignant lesions. Intriguingly, RS tolerance is achieved through several mechanisms, enabling HPV to exploit the cellular RS response for viral replication and to facilitate viral persistence in the presence of DNA damage. As such, inhibitors of the RS response pathway may provide a novel approach to target HPV-associated lesions and cancers.


Assuntos
Instabilidade Genômica , Papillomaviridae/patogenicidade , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Humanos , Infecções por Papillomavirus/virologia , Replicação Viral
5.
PLoS Pathog ; 14(10): e1007367, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30312361

RESUMO

The life cycle of HPV is tied to the differentiation status of its host cell, with productive replication, late gene expression and virion production restricted to the uppermost layers of the stratified epithelium. HPV DNA is histone-associated, exhibiting a chromatin structure similar to that of the host chromosome. Although HPV chromatin is subject to histone post-translational modifications, how the viral life cycle is epigenetically regulated is not well understood. SETD2 is a histone methyltransferase that places the trimethyl mark on H3K36 (H3K36me3), a mark of active transcription. Here, we define a role for SETD2 and H3K36me3 in the viral life cycle. We have found that HPV positive cells exhibit increased levels of SETD2, with SETD2 depletion leading to defects in productive viral replication and splicing of late viral RNAs. Reducing H3K36me3 by overexpression of KDM4A, an H3K36me3 demethylase, or an H3.3K36M transgene also blocks productive viral replication, indicating a significant role for this histone modification in facilitating viral processes. H3K36me3 is enriched on the 3' end of the early region of the high-risk HPV31 genome in a SETD2-dependent manner, suggesting that SETD2 may regulate the viral life cycle through the recruitment of H3K36me3 readers to viral DNA. Intriguingly, we have found that activation of the ATM DNA damage kinase, which is required for productive viral replication, is necessary for the maintenance of H3K36me3 on viral chromatin and for processing of late viral RNAs. Additionally, we have found that the HPV31 E7 protein maintains the increased SETD2 levels in infected cells through an extension of protein half-life. Collectively, our findings highlight the importance of epigenetic modifications in driving the viral life cycle and identify a novel role for E7 as well as the DNA damage response in the regulation of viral processes through epigenetic modifications.


Assuntos
Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Papillomavirus Humano 31/fisiologia , Queratinócitos/virologia , Infecções por Papillomavirus/virologia , Replicação Viral , Células Cultivadas , Cromatina , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Queratinócitos/metabolismo , Metilação , Infecções por Papillomavirus/genética , Ligação Proteica , RNA Viral/genética
6.
J Virol ; 90(5): 2639-52, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26699641

RESUMO

UNLABELLED: High-risk human papillomavirus 31 (HPV31)-positive cells exhibit constitutive activation of the ATM-dependent DNA damage response (DDR), which is necessary for productive viral replication. In response to DNA double-strand breaks (DSBs), ATM activation leads to DNA repair through homologous recombination (HR), which requires the principal recombinase protein Rad51, as well as BRCA1. Previous studies from our lab demonstrated that Rad51 and BRCA1 are expressed at high levels in HPV31-positive cells and localize to sites of viral replication. These results suggest that HPV may utilize ATM activity to increase HR activity as a means to facilitate viral replication. In this study, we demonstrate that high-risk HPV E7 expression alone is sufficient for the increase in Rad51 and BRCA1 protein levels. We have found that this increase occurs, at least in part, at the level of transcription. Studies analyzing protein stability indicate that HPV may also protect Rad51 and BRCA1 from turnover, contributing to the overall increase in cellular levels. We also demonstrate that Rad51 is bound to HPV31 genomes, with binding increasing per viral genome upon productive replication. We have found that depletion of Rad51 and BRCA1, as well as inhibition of Rad51's recombinase activity, abrogates productive viral replication upon differentiation. Overall, these results indicate that Rad51 and BRCA1 are required for the process of HPV31 genome amplification and suggest that productive replication occurs in a manner dependent upon recombination. IMPORTANCE: Productive replication of HPV31 requires activation of an ATM-dependent DNA damage response, though how ATM activity contributes to replication is unclear. Rad51 and BRCA1 play essential roles in repair of double-strand breaks, as well as the restart of stalled replication forks through homologous recombination (HR). Given that ATM activity is required to initiate HR repair, coupled with the requirement of Rad51 and BRCA1 for productive viral replication, our findings suggest that HPV may utilize ATM activity to ensure localization of recombination factors to productively replicating viral genomes. The finding that E7 increases the levels of Rad51 and BRCA1 suggests that E7 contributes to productive replication by providing DNA repair factors required for viral DNA synthesis. Our studies not only imply a role for recombination in the regulation of productive HPV replication but provide further insight into how HPV manipulates the DDR to facilitate the productive phase of the viral life cycle.


Assuntos
Proteína BRCA1/metabolismo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 31/fisiologia , Rad51 Recombinase/metabolismo , Replicação Viral , Células Cultivadas , Células Epiteliais/virologia , Fibroblastos/virologia , Regulação da Expressão Gênica , Papillomavirus Humano 31/crescimento & desenvolvimento , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Reparo de DNA por Recombinação , Transcrição Gênica , Regulação para Cima
7.
J Virol ; 89(15): 7465-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25948750

RESUMO

UNLABELLED: As a herpesvirus, Epstein-Barr virus (EBV) establishes a latent infection that can periodically undergo reactivation, resulting in lytic replication and the production of new infectious virus. Latent membrane protein-1 (LMP1), the principal viral oncoprotein, is a latency-associated protein implicated in regulating viral reactivation and the maintenance of latency. We recently found that LMP1 hijacks the SUMO-conjugating enzyme Ubc9 via its C-terminal activating region-3 (CTAR3) and induces the sumoylation of cellular proteins. Because protein sumoylation can promote transcriptional repression, we hypothesized that LMP1-induced protein sumoylation induces the repression of EBV lytic promoters and helps maintain the viral genome in its latent state. We now show that with inhibition of LMP1-induced protein sumoylation, the latent state becomes less stable or leakier in EBV-transformed lymphoblastoid cell lines. The cells are also more sensitive to viral reactivation induced by irradiation, which results in the increased production and release of infectious virus, as well as increased susceptibility to ganciclovir treatment. We have identified a target of LMP1-mediated sumoylation that contributes to the maintenance of latency in this context: KRAB-associated protein-1 (KAP1). LMP1 CTAR3-mediated sumoylation regulates the function of KAP1. KAP1 also binds to EBV OriLyt and immediate early promoters in a CTAR3-dependent manner, and inhibition of sumoylation processes abrogates the binding of KAP1 to these promoters. These data provide an additional line of evidence that supports our findings that CTAR3 is a distinct functioning regulatory region of LMP1 and confirm that LMP1-induced sumoylation may help stabilize the maintenance of EBV latency. IMPORTANCE: Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1) plays an important role in the maintenance of viral latency. Previously, we documented that LMP1 targets cellular proteins to be modified by a ubiquitin-like protein (SUMO). We have now identified a function for this LMP1-induced modification of cellular proteins in the maintenance of EBV latency. Because latently infected cells have to undergo viral reactivation in order to be vulnerable to antiviral drugs, these findings identify a new way to increase the rate of EBV reactivation, which increases cell susceptibility to antiviral therapies.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiologia , Proteínas Repressoras/metabolismo , Proteínas da Matriz Viral/metabolismo , Latência Viral , Linhagem Celular , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Sumoilação , Proteína 28 com Motivo Tripartido , Proteínas da Matriz Viral/genética
8.
J Virol ; 88(15): 8528-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850735

RESUMO

UNLABELLED: Activation of the ATM (ataxia telangiectasia-mutated kinase)-dependent DNA damage response (DDR) is necessary for productive replication of human papillomavirus 31 (HPV31). We previously found that DNA repair and homologous recombination (HR) factors localize to sites of HPV replication, suggesting that ATM activity is required to recruit factors to viral genomes that can productively replicate viral DNA in a recombination-dependent manner. The Mre11-Rad50-Nbs1 (MRN) complex is an essential component of the DDR that is necessary for ATM-mediated HR repair and localizes to HPV DNA foci. In this study, we demonstrate that the HPV E7 protein is sufficient to increase levels of the MRN complex and also interacts with MRN components. We have found that Nbs1 depletion blocks productive viral replication and results in decreased localization of Mre11, Rad50, and the principal HR factor Rad51 to HPV DNA foci upon differentiation. Nbs1 contributes to the DDR by acting as an upstream activator of ATM in response to double-strand DNA breaks (DSBs) and as a downstream effector of ATM activity in the intra-S-phase checkpoint. We have found that phosphorylation of ATM and its downstream target Chk2, as well as SMC1 (structural maintenance of chromosome 1), is maintained upon Nbs1 knockdown in differentiating cells. Given that ATM and Chk2 are required for productive replication, our results suggest that Nbs1 contributes to viral replication outside its role as an ATM activator, potentially through ensuring localization of DNA repair factors to viral genomes that are necessary for efficient productive replication. IMPORTANCE: The mechanisms that regulate human papillomavirus (HPV) replication during the viral life cycle are not well understood. Our finding that Nbs1 is necessary for productive replication even in the presence of ATM (ataxia telangiectasia-mutated kinase) and Chk2 phosphorylation offers evidence that Nbs1 contributes to viral replication downstream of facilitating ATM activation. Nbs1 is required for the recruitment of Mre11 and Rad50 to viral genomes, suggesting that the MRN complex plays a direct role in facilitating productive viral replication, potentially through the processing of substrates that are recognized by the key homologous recombination (HR) factor Rad51. The discovery that E7 increases levels of MRN components, and MRN complex formation, identifies a novel role for E7 in facilitating productive replication. Our study not only identifies DNA repair factors necessary for HPV replication but also provides a deeper understanding of how HPV utilizes the DNA damage response to regulate viral replication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 31/fisiologia , Proteínas Nucleares/metabolismo , Replicação Viral , Células Cultivadas , Células Epiteliais , Humanos , Queratinócitos/virologia , Proteínas E7 de Papillomavirus/metabolismo
9.
J Virol ; 86(17): 9520-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22740399

RESUMO

Human papillomaviruses (HPV) activate the ataxia telangiectasia mutated (ATM)-dependent DNA damage response to induce viral genome amplification upon epithelial differentiation. Our studies show that along with members of the ATM pathway, HPV proteins also localize factors involved in homologous DNA recombination to distinct nuclear foci that contain HPV genomes and cellular replication factors. These studies indicate that HPV activates the ATM pathway to recruit repair factors to viral genomes and allow for efficient replication.


Assuntos
Alphapapillomavirus/fisiologia , Reparo do DNA , Recombinação Homóloga , Infecções por Papillomavirus/genética , Replicação Viral , Alphapapillomavirus/genética , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Annu Rev Virol ; 10(1): 325-345, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37040798

RESUMO

High-risk human papillomaviruses (HPVs) are associated with several human cancers. HPVs are small, DNA viruses that rely on host cell machinery for viral replication. The HPV life cycle takes place in the stratified epithelium, which is composed of different cell states, including terminally differentiating cells that are no longer active in the cell cycle. HPVs have evolved mechanisms to persist and replicate in the stratified epithelium by hijacking and modulating cellular pathways, including the DNA damage response (DDR). HPVs activate and exploit DDR pathways to promote viral replication, which in turn increases the susceptibility of the host cell to genomic instability and carcinogenesis. Here, we review recent advances in our understanding of the regulation of the host cell DDR by high-risk HPVs during the viral life cycle and discuss the potential cellular consequences of modulating DDR pathways.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Humanos , Replicação Viral/genética , Dano ao DNA , Infecções por Papillomavirus/genética , Papillomaviridae/genética
12.
Tumour Virus Res ; 16: 200272, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918513

RESUMO

Approximately 20 % of human cancers are associated with virus infection. DNA tumor viruses can induce tumor formation in host cells by disrupting the cell's DNA replication and repair mechanisms. Specifically, these viruses interfere with the host cell's DNA damage response (DDR), which is a complex network of signaling pathways that is essential for maintaining the integrity of the genome. DNA tumor viruses can disrupt these pathways by expressing oncoproteins that mimic or inhibit various DDR components, thereby promoting genomic instability and tumorigenesis. Recent studies have highlighted the molecular mechanisms by which DNA tumor viruses interact with DDR components, as well as the ways in which these interactions contribute to viral replication and tumorigenesis. Understanding the interplay between DNA tumor viruses and the DDR pathway is critical for developing effective strategies to prevent and treat virally associated cancers. In this review, we discuss the current state of knowledge regarding the mechanisms by which human papillomavirus (HPV), merkel cell polyomavirus (MCPyV), Kaposi's sarcoma-associated herpesvirus (KSHV), and Epstein-Barr virus (EBV) interfere with DDR pathways to facilitate their respective life cycles, and the consequences of such interference on genomic stability and cancer development.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 8 , Neoplasias , Humanos , Herpesvirus Humano 4 , Vírus de DNA Tumorais/genética , Neoplasias/genética , Herpesvirus Humano 8/fisiologia , Reparo do DNA/genética , Carcinogênese
13.
J Virol ; 85(17): 8996-9012, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21734051

RESUMO

Replication of the papillomavirus genome is initiated by the assembly of a complex between the viral E1 and E2 proteins at the origin. The E1 helicase is comprised of a C-terminal ATPase/helicase domain, a central domain that binds to the origin, and an N-terminal regulatory region that contains nuclear import and export signals mediating its nucleocytoplasmic shuttling. We previously reported that nuclear accumulation of E1 has a deleterious effect on cellular proliferation which can be prevented by its nuclear export. Here we have shown that nuclear accumulation of E1 from different papillomavirus types blocks cell cycle progression in early S phase and triggers the activation of a DNA damage response (DDR) and of the ATM pathway in a manner that requires both the origin-binding and ATPase activities of E1. Complex formation with E2 reduces the ability of E1 to induce a DDR but does not prevent cell cycle arrest. Transient viral DNA replication still occurs in S-phase-arrested cells but surprisingly is neither affected by nor dependent on induction of a DDR and of the ATM kinase. Finally, we provide evidence that a DDR is also induced in human papillomavirus type 31 (HPV31)-immortalized keratinocytes expressing a mutant E1 protein defective for nuclear export. We propose that nuclear export of E1 prevents cell cycle arrest and the induction of a DDR during the episomal maintenance phase of the viral life cycle and that complex formation with E2 further safeguards undifferentiated cells from undergoing a DDR when E1 is in the nucleus.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/patogenicidade , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular , Humanos , Papillomaviridae/crescimento & desenvolvimento , Replicação Viral
14.
Viruses ; 14(8)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36016419

RESUMO

High-risk human papillomaviruses (HR HPVs) are associated with multiple human cancers and comprise 5% of the human cancer burden. Although most infections are transient, persistent infections are a major risk factor for cancer development. The life cycle of HPV is intimately linked to epithelial differentiation. HPVs establish infection at a low copy number in the proliferating basal keratinocytes of the stratified epithelium. In contrast, the productive phase of the viral life cycle is activated upon epithelial differentiation, resulting in viral genome amplification, high levels of late gene expression, and the assembly of virions that are shed from the epithelial surface. Avoiding activation of an innate immune response during the course of infection plays a key role in promoting viral persistence as well as completion of the viral life cycle in differentiating epithelial cells. This review highlights the recent advances in our understanding of how HPVs manipulate the host cell environment, often in a type-specific manner, to suppress activation of an innate immune response to establish conditions supportive of viral replication.


Assuntos
Alphapapillomavirus , Neoplasias , Infecções por Papillomavirus , Animais , Humanos , Imunidade Inata , Queratinócitos , Estágios do Ciclo de Vida , Neoplasias/metabolismo , Papillomaviridae/genética , Replicação Viral
15.
J Virol ; 84(22): 11747-60, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20844047

RESUMO

The initiator protein E1 from human papillomavirus (HPV) is a helicase essential for replication of the viral genome. E1 contains three functional domains: a C-terminal enzymatic domain that has ATPase/helicase activity, a central DNA-binding domain that recognizes specific sequences in the origin of replication, and a N-terminal region necessary for viral DNA replication in vivo but dispensable in vitro. This N-terminal portion of E1 contains a conserved nuclear export signal (NES) whose function in the viral life cycle remains unclear. In this study, we provide evidence that nuclear export of HPV31 E1 is inhibited by cyclin E/A-Cdk2 phosphorylation of two serines residues, S92 and S106, located near and within the E1 NES, respectively. Using E1 mutant proteins that are confined to the nucleus, we determined that nuclear export of E1 is not essential for transient viral DNA replication but is important for the long-term maintenance of the HPV episome in undifferentiated keratinocytes. The findings that E1 nuclear export is not required for viral DNA replication but needed for genome maintenance over multiple cell divisions raised the possibility that continuous nuclear accumulation of E1 is detrimental to cellular growth. In support of this possibility, we observed that nuclear accumulation of E1 dramatically reduces cellular proliferation by delaying cell cycle progression in S phase. On the basis of these results, we propose that nuclear export of E1 is required, at least in part, to limit accumulation of this viral helicase in the nucleus in order to prevent its detrimental effect on cellular proliferation.


Assuntos
Alphapapillomavirus/fisiologia , Núcleo Celular/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Genoma Viral , Infecções por Papillomavirus/enzimologia , Proteínas Virais/metabolismo , Replicação Viral , Transporte Ativo do Núcleo Celular , Alphapapillomavirus/química , Alphapapillomavirus/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/química , Núcleo Celular/genética , Quinase 2 Dependente de Ciclina/genética , Humanos , Dados de Sequência Molecular , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Fosforilação , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética
16.
PLoS Pathog ; 5(10): e1000605, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19798429

RESUMO

Human papillomaviruses (HPV) are the causative agents of cervical cancers. The infectious HPV life cycle is closely linked to the differentiation state of the host epithelia, with viral genome amplification, late gene expression and virion production restricted to suprabasal cells. The E6 and E7 proteins provide an environment conducive to DNA synthesis upon differentiation, but little is known concerning the mechanisms that regulate productive viral genome amplification. Using keratinocytes that stably maintain HPV-31 episomes, and chemical inhibitors, we demonstrate that viral proteins activate the ATM DNA damage response in differentiating cells, as indicated by phosphorylation of CHK2, BRCA1 and NBS1. This activation is necessary for viral genome amplification, as well as for formation of viral replication foci. In contrast, inhibition of ATM kinase activity in undifferentiated keratinocytes had no effect on the stable maintenance of viral genomes. Previous studies have shown that HPVs induce low levels of caspase 3/7 activation upon differentiation and that this is important for cleavage of the E1 replication protein and genome amplification. Our studies demonstrate that caspase cleavage is induced upon differentiation of HPV positive cells through the action of the DNA damage protein kinase CHK2, which may be activated as a result of E7 binding to the ATM kinase. These findings identify a major regulatory mechanism responsible for productive HPV replication in differentiating cells. Our results have potential implications for the development of anti-viral therapies to treat HPV infections.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Viral , Papillomaviridae/genética , Infecções por Papillomavirus/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Replicação Viral/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Southern Blotting , Western Blotting , Diferenciação Celular/fisiologia , Quinase do Ponto de Checagem 2 , Imunofluorescência , Humanos , Imuno-Histoquímica , Imunoprecipitação , Hibridização in Situ Fluorescente , Queratinócitos/citologia , Queratinócitos/virologia , Papillomaviridae/patogenicidade , Proteínas E7 de Papillomavirus/metabolismo , Transdução de Sinais/fisiologia
17.
Proc Natl Acad Sci U S A ; 104(49): 19541-6, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18048335

RESUMO

The life cycle of human papillomaviruses (HPVs) is linked to epithelial differentiation, with late viral events restricted to the uppermost stratified layers. Our studies indicated that HPV activates capases-3, -7, and -9 upon differentiation, whereas minimal activation was observed in differentiating normal keratinocytes. Activation occurred in the absence of significant levels of apoptosis, suggesting a potential role for caspases in the viral life cycle. In support of this, the addition of caspase inhibitors significantly impaired differentiation-dependent viral genome amplification. A conserved caspase cleavage motif was identified in the replication protein E1 ((46)DxxD(49)) that was targeted in vitro by both recombinant caspase-3 and caspase-7. Mutation of this site inhibited amplification of viral genomes, indicating that caspase cleavage is necessary for the productive viral life cycle. Our study demonstrates that HPV activates caspases upon differentiation to facilitate productive viral replication and represents a way by which HPV controls viral gene function in differentiating cells.


Assuntos
Alphapapillomavirus/fisiologia , Apoptose , Caspases/metabolismo , Queratinócitos/virologia , Proteínas Virais/metabolismo , Replicação Viral , Alphapapillomavirus/genética , Diferenciação Celular , Linhagem Celular , Genoma Viral/genética , Genoma Viral/fisiologia , Humanos , Queratinócitos/citologia , Queratinócitos/enzimologia , Proteínas Oncogênicas Virais/metabolismo , Especificidade por Substrato , Proteínas Virais/genética
18.
Pathogens ; 9(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570816

RESUMO

Persistent infection with certain types of human papillomaviruses (HPVs), termed high risk, presents a public health burden due to their association with multiple human cancers, including cervical cancer and an increasing number of head and neck cancers. Despite the development of prophylactic vaccines, the incidence of HPV-associated cancers remains high. In addition, no vaccine has yet been licensed for therapeutic use against pre-existing HPV infections and HPV-associated diseases. Although persistent HPV infection is the major risk factor for cancer development, additional genetic and epigenetic alterations are required for progression to the malignant phenotype. Unlike genetic mutations, the reversibility of epigenetic modifications makes epigenetic regulators ideal therapeutic targets for cancer therapy. This review article will highlight the recent advances in the understanding of epigenetic modifications associated with HPV infections, with a particular focus on the role of these epigenetic changes during different stages of the HPV life cycle that are closely associated with activation of DNA damage response pathways.

19.
J Virol ; 82(3): 1271-83, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18032488

RESUMO

Due to the limited coding capacity of their small genomes, human papillomaviruses (HPV) rely extensively on host factors for the completion of their life cycles. Accordingly, most HPV proteins, including the replicative helicase E1, engage in multiple protein interactions. The fact that conserved regions of E1 have not yet been ascribed a function prompted us to use tandem affinity protein purification (TAP) coupled to mass spectrometry to identify novel targets of this helicase. This method led to the discovery of a novel interaction between the N-terminal 40 amino acids of HPV type 11 (HPV11) E1 and the cellular WD repeat protein p80 (WDR48). We found that interaction with p80 is conserved among E1 proteins from anogenital HPV but not among cutaneous or animal types. Colocalization studies showed that E1 can redistribute p80 from the cytoplasm to the nucleus in a manner that is dependent on the E1 nuclear localization signal. Three amino acid substitutions in E1 proteins from HPV11 and -31 were identified that abrogate binding to p80 and its relocalization to the nucleus. In HPV31 E1, these substitutions reduced but did not completely abolish transient viral DNA replication. HPV31 genomes encoding two of the mutant E1 proteins were not maintained as episomes in immortalized primary keratinocytes, whereas one encoding the third mutant protein was maintained at a very low copy number. These findings suggest that the interaction of E1 with p80 is required for efficient maintenance of the viral episome in undifferentiated keratinocytes.


Assuntos
DNA Helicases/metabolismo , DNA Viral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Queratinócitos/virologia , Papillomaviridae/fisiologia , Proteínas/metabolismo , Proteínas Virais/metabolismo , Substituição de Aminoácidos/genética , Animais , Linhagem Celular , Núcleo Celular/química , Cromatografia de Afinidade , Proteínas de Ligação a DNA/genética , Haplorrinos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Virais/genética
20.
mSphere ; 3(4)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021881

RESUMO

Epstein-Barr virus (EBV) infects epithelial cells and is associated with epithelial malignancies. Although EBV reactivation is induced by epithelial differentiation, the available methods for differentiation are not widely used. In a recent study, Caves et al. (mSphere 3:e00152-18, 2018, https://doi.org/10.1128/mSphere.00152-18) explored the use of a new transwell-based air-liquid interface (ALI) system to differentiate EBV-infected nasopharyngeal carcinoma cells. They found that cells cultured in the ALI system expressed markers of differentiation and supported complete EBV reactivation. This system offers an easy method for differentiation that could be widely adopted. This system could be extended to other epithelial cell types.


Assuntos
Herpesvirus Humano 4 , Neoplasias Nasofaríngeas , Carcinoma , Células Epiteliais , Humanos , Carcinoma Nasofaríngeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA