Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522952

RESUMO

Salt and drought are documented among the most detrimental and persistent abiotic stresses for crop production. Here, we investigated the impact of Pseudomonas koreensis strain S4T10 on plant performance under salt and drought stress. Arabidopsis thaliana Col-0 wild type and atnced3 mutant plants were inoculated with P. koreensis or tap water and exposed to NaCl (100 mM) for five days and drought stress by withholding water for seven days. P. koreensis significantly enhanced plant biomass and photosynthetic pigments under salt and drought stress conditions. Moreover, P. koreensis activated the antioxidant defence by modulating glutathione (GSH), superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activities to scavenge the reactive oxygen species produced due to the stress. In addition, the application of P. koreensis upregulated the expression of genes associated with antioxidant responses, such as AtCAT1, AtCAT3, and AtSOD. Similarly, genes linked to salt stress, such as AtSOS1, AtSOS2, AtSOS3, AtNHX1, and AtHKT1, were also upregulated, affirming the positive role of P. koreensis S4T10 in streamlining the cellular influx and efflux transport systems during salt stress. Likewise, the PGPB inoculation was observed to regulate the expression of drought-responsive genes AtDREB2A, AtDREB2B, and ABA-responsive genes AtAO3, AtABA3 indicating that S4T10 enhanced drought tolerance via modulation of the ABA pathway. The results of this study affirm that P. koreensis S4T10 could be further developed as a biofertilizer to mitigate salt and drought stress at the same time.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Antioxidantes/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732255

RESUMO

This research aimed to explore the healing impacts of Melittin treatment on gastrocnemius muscle wasting caused by immobilization with a cast in rabbits. Twenty-four rabbits were randomly allocated to four groups. The procedures included different injections: 0.2 mL of normal saline to Group 1 (G1-NS); 4 µg/kg of Melittin to Group 2 (G2-4 µg/kg Melittin); 20 µg/kg of Melittin to Group 3 (G3-20 µg/kg Melittin); and 100 µg/kg of Melittin to Group 4 (G4-100 µg/kg Melittin). Ultrasound was used to guide the injections into the rabbits' atrophied calf muscles following two weeks of immobilization via casting. Clinical measurements, including the length of the calf, the compound muscle action potential (CMAP) of the tibial nerve, and the gastrocnemius muscle thickness, were assessed. Additionally, cross-sectional slices of gastrocnemius muscle fibers were examined, and immunohistochemistry and Western blot analyses were performed following two weeks of therapy. The mean regenerative changes, as indicated by clinical parameters, in Group 4 were significantly more pronounced than in the other groups (p < 0.05). Furthermore, the cross-sectional area of the gastrocnemius muscle fibers and immunohistochemical indicators in Group 4 exceeded those in the remaining groups (p < 0.05). Western blot analysis also showed a more significant presence of anti-inflammatory and angiogenic cytokines in Group 4 compared to the others (p < 0.05). Melittin therapy at a higher dosage can more efficiently activate regeneration in atrophied gastrocnemius muscle compared to lower doses of Melittin or normal saline.


Assuntos
Meliteno , Músculo Esquelético , Atrofia Muscular , Regeneração , Animais , Coelhos , Meliteno/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Regeneração/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Masculino
3.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39337520

RESUMO

This study investigated the neuroprotective effects of peripheral nerve microcurrent stimulation therapy in a rat model of middle cerebral artery occlusion (MCAO). Twenty 8-week-old male Sprague Dawley rats weighing 300-330 g were categorised into group A, serving as the healthy control; group B, including rats subjected to MCAO; group C, including rats receiving microcurrent therapy immediately after MCAO, which was continued for one week; and group D, including rats receiving microcurrent therapy one week before and one week after MCAO. A gross morphological analysis, behavioural motion analysis, histological examination, immunohistochemistry, and Western blotting were conducted. Microcurrent therapy significantly reduced ischaemic damage and pyramidal cells of the hippocampus CA1 region. Haematoxylin and eosin staining revealed infarction areas/viable pyramidal cell numbers of 0%/94.33, 28.53%/40.05, 17.32%/80.13, and 5.38%/91.34 in groups A, B, C, and D, respectively (p < 0.001). A behavioural analysis revealed that the total distances moved were 1945.24 cm, 767.85 cm, 1781.77 cm, and 2122.22 cm in groups A, B, C, and D, respectively (p < 0.05), and the mean speeds were 6.48 cm/s, 2.50 cm/s, 5.43 cm/s, and 6.82 cm/s, respectively (p < 0.05). Inflammatory markers (cluster of differentiation 68, interleukin-6, and tumour necrosis factor-α) significantly decreased in the treated groups (p < 0.001). Western blotting revealed reduced proinflammatory, oxidative stress, and apoptosis-related protein levels, along with increased angiogenic factors and mitogen-activated protein kinase (MAPK) pathway modulation in the treated groups. Peripheral nerve microcurrent stimulation therapy effectively mitigates ischaemic damage, promotes recovery, reduces inflammation, and modulates protein expression, emphasising its potential as a therapeutic strategy for ischaemic stroke.


Assuntos
Modelos Animais de Doenças , Terapia por Estimulação Elétrica , Infarto da Artéria Cerebral Média , Ratos Sprague-Dawley , Animais , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Ratos , Terapia por Estimulação Elétrica/métodos , Neuroproteção
4.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273533

RESUMO

Although frequently prescribed for frozen shoulder, it is not known if corticosteroid injections improve the course of frozen shoulder. This study aimed to assess the disease-modifying effects of an intra-articular corticosteroid administration at the freezing phase of frozen shoulder. Twenty-four Sprague-Dawley rats were divided into four groups. Their unilateral shoulders were immobilized for the first 3 days in all groups, followed by an intra-articular corticosteroid injection in Group A, an injection and the cessation of immobilization in Group B, no further intervention in Group C, and the cessation of immobilization in Group D. All rats were sacrificed in Week 3 of study, at which point the passive shoulder abduction angles were measured and the axillary recess tissues were retrieved for histological and Western blot analyses. The passive shoulder abduction angles at the time of sacrifice were 138° ± 8° (Group A), 146° ± 5° (Group B), 95° ± 11° (Group C), 132° ± 8° (Group D), and 158° ± 2° (Control). The histological assessments and Western blots showed greater fibrosis and inflammation in the groups that did not receive the corticosteroid injection (Groups C and D) compared to the corticosteroid-injected groups (Groups A and B). These findings demonstrate the anti-inflammatory and disease-modifying effects of corticosteroid injections during the freezing phase of frozen shoulder in an animal model.


Assuntos
Corticosteroides , Bursite , Modelos Animais de Doenças , Ratos Sprague-Dawley , Animais , Bursite/tratamento farmacológico , Bursite/patologia , Injeções Intra-Articulares , Ratos , Corticosteroides/administração & dosagem , Corticosteroides/farmacologia , Masculino , Articulação do Ombro/efeitos dos fármacos , Articulação do Ombro/patologia
5.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834024

RESUMO

Plant roots show distinct gene-expression profiles from those of shoots under abiotic stress conditions. In this study, we performed mRNA sequencing (mRNA-Seq) to analyze the transcriptional profiling of Arabidopsis roots under osmotic stress conditions-high salinity (NaCl) and drought (mannitol). The roots demonstrated significantly distinct gene-expression changes from those of the aerial parts under both the NaCl and the mannitol treatment. We identified 68 closely connected transcription-factor genes involved in osmotic stress-signal transduction in roots. Well-known abscisic acid (ABA)-dependent and/or ABA-independent osmotic stress-responsive genes were not considerably upregulated in the roots compared to those in the aerial parts, indicating that the osmotic stress response in the roots may be regulated by other uncharacterized stress pathways. Moreover, we identified 26 osmotic-stress-responsive genes with distinct expressions of alternative splice variants in the roots. The quantitative reverse-transcription polymerase chain reaction further confirmed that alternative splice variants, such as those for ANNAT4, MAGL6, TRM19, and CAD9, were differentially expressed in the roots, suggesting that alternative splicing is an important regulatory mechanism in the osmotic stress response in roots. Altogether, our results suggest that tightly connected transcription-factor families, as well as alternative splicing and the resulting splice variants, are involved in the osmotic stress response in roots.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Pressão Osmótica/fisiologia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Raízes de Plantas/metabolismo , Manitol/farmacologia , Manitol/metabolismo , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas , Plantas Geneticamente Modificadas/genética
6.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629001

RESUMO

This study primarily aimed to investigate the combined effects of polydeoxyribonucleotide (PDRN) and extracorporeal shock wave therapy (ESWT) sequences on the regenerative processes in atrophied animal muscles. Thirty male New Zealand rabbits, aged 12 weeks, were divided into five groups: normal saline (Group 1), PDRN (Group 2), ESWT (Group 3), PDRN injection before ESWT (Group 4), and PDRN injection after ESWT (Group 5). After 2 weeks of cast immobilization, the respective treatments were administered to the atrophied calf muscles. Radial ESWT was performed twice weekly. Calf circumference, tibial nerve compound muscle action potential (CMAP), and gastrocnemius (GCM) muscle thickness after 2 weeks of treatment were evaluated. Histological and immunohistochemical staining, as well as Western blot analysis, were conducted 2 weeks post-treatment. Staining intensity and extent were assessed using semi-quantitative scores. Groups 4 and 5 demonstrated significantly greater calf muscle circumference, GCM muscle thickness, tibial nerve CMAP, and GCM muscle fiber cross-sectional area (type I, type II, and total) than the remaining three groups (p < 0.05), while they did not differ significantly in these parameters. Groups 2 and 3 showed higher values for all the mentioned parameters than Group 1 (p < 0.05). Group 4 had the greatest ratio of vascular endothelial growth factor (VEGF) to platelet endothelial cell adhesion molecule-1 (PECAM-1) in the GCM muscle fibers compared to the other four groups (p < 0.05). Western blot analysis revealed significantly higher expression of angiogenesis cytokines in Groups 4 and 5 than in the other groups (p < 0.05). The combination of ESWT and PDRN injection demonstrated superior regenerative efficacy for atrophied calf muscle tissue in rabbit models compared to these techniques alone or saline. In particular, administering ESWT after PDRN injection yielded the most favorable outcomes in specific parameters.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Masculino , Coelhos , Animais , Fator A de Crescimento do Endotélio Vascular , Fibras Musculares Esqueléticas , Atrofia Muscular/terapia , Polidesoxirribonucleotídeos/farmacologia , Polidesoxirribonucleotídeos/uso terapêutico
7.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068913

RESUMO

Drought stress is a significant threat to agricultural productivity and poses challenges to plant survival and growth. Research into microbial plant biostimulants faces difficulties in understanding complicated ecological dynamics, molecular mechanisms, and specificity; to address these knowledge gaps, collaborative efforts and innovative strategies are needed. In the present study, we investigated the potential role of Brevundimonas vesicularis (S1T13) as a microbial plant biostimulant to enhance drought tolerance in Arabidopsis thaliana. We assessed the impact of S1T13 on Col-0 wild-type (WT) and atnced3 mutant plants under drought conditions. Our results revealed that the inoculation of S1T13 significantly contributed to plant vigor, with notable improvements observed in both genotypes. To elucidate the underlying mechanisms, we studied the role of ROS and their regulation by antioxidant genes and enzymes in plants inoculated with S1T13. Interestingly, the inoculation of S1T13 enhanced the activities of GSH, SOD, POD, and PPO by 33, 35, 41, and 44% in WT and 24, 22, 26, and 33% in atnced3, respectively. In addition, S1T13 upregulated the expression of antioxidant genes. This enhanced antioxidant machinery played a crucial role in neutralizing ROS and protecting plant cells from oxidative damage during drought stress. Furthermore, we investigated the impact of S1T13 on ABA and drought-stress-responsive genes. Similarly, S1T13 modulated the production of ABA and expression of AO3, ABA3, DREB1A, and DREB2A by 31, 42, 37, 41, and 42% in WT and 20, 29, 27, 38, and 29% in atnced3. The improvement in plant vigor, coupled with the induction of the antioxidant system and modulation of ABA, indicates the pivotal role of S1T13 in enhancing the drought stress tolerance of the plants. Conclusively, the current study provides valuable insights for the application of multitrait S1T13 as a novel strain to improve drought stress tolerance in plants and could be added to the consortium of biofertilizers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Antioxidantes/metabolismo , Secas , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética
8.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38069409

RESUMO

Poly (ADP-ribose) polymerase (PARP) inhibitors are effective against BRCA1/2-mutated cancers through synthetic lethality. Unfortunately, most cases ultimately develop acquired resistance. Therefore, enhancing PARP inhibitor sensitivity and preventing resistance in those cells are an unmet clinical need. Here, we investigated the ability of paraspeckle component 1 (PSPC1), as an additional synthetic lethal partner with BRCA1/2, to enhance olaparib sensitivity in preclinical models of BRCA1/2-mutated breast and ovarian cancers. In vitro, the combined olaparib and PSPC1 small interfering RNA (siRNA) exhibited synergistic anti-proliferative activity in BRCA1/2-mutated breast and ovarian cancer cells. The combination therapy also demonstrated synergistic tumor inhibition in a xenograft mouse model. Mechanistically, olaparib monotherapy increased the expressions of p-ATM and DNA-PKcs, suggesting the activation of a DNA repair pathway, whereas combining PSPC1 siRNA with olaparib decreased the expressions of p-ATM and DNA-PKcs again. As such, the combination increased the formation of γH2AX foci, indicating stronger DNA double-strand breaks. Subsequently, these DNA-damaged cells escaped G2/M checkpoint activation, as indicated by the suppression of p-cdc25C (Ser216) and p-cdc2 (Tyr15) after combination treatment. Finally, these cells entered mitosis, which induced increased apoptosis. Thus, this proves that PSPC1 inhibition enhances olaparib sensitivity by targeting DNA damage response in our preclinical model. The combination of olaparib and PSPC1 inhibition merits further clinical investigation to enhance PARP inhibitor efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Antineoplásicos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Humanos , Feminino , Camundongos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteína BRCA1/genética , Proteína BRCA2/genética , RNA Interferente Pequeno/genética
9.
Surg Radiol Anat ; 45(4): 461-468, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36792669

RESUMO

PURPOSE: The aim of this study was to determine the width of the fibers that extend from the orbicularis oculi muscle (OOc) to the upper lip, and the lateral and inferior lengths of the OOc at the lateral canthus level. METHODS: The OOc was investigated in the 40 hemifaces of 20 Korean cadavers. The lateral fibers of the OOc (OOc lat) were traced to determine whether or not these fibers extended to the upper lip. RESULTS: The OOc lat extended to the upper lip at the lateral canthus level in 31 of the 40 specimens (77.5%), whereas some inferolateral fibers of the OOc that extended to the upper lip were observed near the level of the lower margin of the OOc in the other 9 specimens (22.5%). The mean ± SD and maximum widths of the OOc lat that extended to the upper lip at the lateral canthus level were 6.9 ± 3.3 mm and 14.3 mm, respectively. CONCLUSION: The obtained data will be helpful to distinguish the muscles that underly the wrinkles around the lateral canthus for safer and more-efficient BoNT-A treatments for crow's feet.


Assuntos
Toxinas Botulínicas Tipo A , Aparelho Lacrimal , Envelhecimento da Pele , Humanos , Lábio , Músculos Faciais
10.
Invest New Drugs ; 40(5): 1001-1010, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35802288

RESUMO

Preclinical models suggest anticancer activity of IM156, a novel biguanide mitochondrial protein complex 1 inhibitor of oxidative phosphorylation (OXPHOS). This first-in-human dose-escalation study enrolled patients with refractory advanced solid tumors to determine the maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D). Eligible patients received oral IM156 every other day (QOD) or daily (QD) and were assessed for safety, dose-limiting toxicities (DLTs), pharmacokinetics, and preliminary signals of efficacy. 22 patients with advanced cancers (gastric, n = 8; colorectal, n = 3; ovarian, n = 3; other, n = 8) received IM156 100 to 1,200 mg either QOD or QD. There were no DLTs. However, 1,200 mg QD was not well tolerated due to nausea; 800 mg QD was determined as the RP2D. The most frequent treatment-related AEs (TRAEs) were nausea (n = 15; 68%), diarrhea (n = 10; 46%), emesis (n = 9; 41%), fatigue (n = 4; 18%) and abdominal pain, constipation, and blood lactate increased (n = 2 each; 9%). Grade 3 nausea (n = 3; 14%) was the only grade ≥ 3 TRAE. Plasma exposures increased dose proportionally; mean Day 27 area under the curve (AUC0-24) values were higher following QD administration compared to the respective QOD regimen. Stable disease (SD), observed in 7 (32%) patients (confirmed in 2 [9%]), was the best response. To our knowledge, this is the first phase 1 study of an OXPHOS inhibitor that established a RP2D for further clinical development in cancer. Observed AEs of IM156 were manageable and SD was the best response.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/efeitos adversos , Biguanidas/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Dose Máxima Tolerável , Náusea/induzido quimicamente , Neoplasias/metabolismo , Fosforilação Oxidativa
11.
Fish Shellfish Immunol ; 128: 604-611, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35995373

RESUMO

This study investigated the effects of dietary supplementation with anthocyanin extracted from black rice bran (AR) on the growth rate, immunological response, and expression of immune and antioxidant genes in Nile tilapia raised in an indoor biofloc system. A total of 300 Nile tilapia fingerlings (15.14 ± 0.032 g) were maintained in 150 L tanks and acclimatized for two weeks. Five experimental AR diets (0, 1, 2, 4, and 8 g kg-1) with various anthocyanin doses were used to feed the fish. We observed that the growth and feed utilization of fish fed with different dietary AR levels increased significantly after eight weeks (p < 0.05). In addition, the serum immunity of fish fed AR diets was much greater than that of those fed non-AR diets (p < 0.05). However, there were little or no difference in between fish fed AR enriched diets and the control AR-free diet (p > 0.05). After eight weeks, fish fed AR-supplemented diets had significantly higher mRNA transcript levels in immune (interleukin [IL]-1, IL-8, and liposaccharide-binding protein [LBP]) and antioxidant (glutathione transferase-alpha [GST-α] and glutathione reductase [GSR]) genes compared to control fish fed the AR-free diet, with the greatest enhancement of mRNA transcript levels (in the case of IL-8 by up to about 5.8-fold) in the 4 g kg-1 AR diet. These findings suggest that dietary inclusion of AR extract from black rice bran at 4-8 g kg-1 could function as a herbal immunostimulant to enhance growth performance, feed consumption, and immunity in Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Oryza , Adjuvantes Imunológicos/metabolismo , Ração Animal/análise , Animais , Antocianinas/metabolismo , Antioxidantes/metabolismo , Aquicultura , Dieta/veterinária , Suplementos Nutricionais , Expressão Gênica , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Interleucina-8 , Oryza/genética , Extratos Vegetais/metabolismo , RNA Mensageiro/metabolismo
12.
Appl Microbiol Biotechnol ; 106(3): 877-887, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35061091

RESUMO

Plant growth-promoting rhizobacteria (PGPR) actively colonize the plant rhizosphere, which not only stimulates plants' growth and development but also mitigates the adverse effects of abiotic stressors. Besides other techniques and approaches used for the alleviation of abiotic stress conditions, the utilization of PGPR with multiplant growth-promoting traits is desirable because the application of PGPR is pragmatic, sustainable, and environmentally friendly. In the past four decades, numerous ACC deaminase-producing PGPR have been reported for the improvement of crop plants' growth and development under different abiotic stress conditions. Since 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR regulates ethylene production by utilizing the exuded ACC, which is an immediate precursor of ethylene biosynthesis. However, little is known about the basic mechanism involved in the acquisition of ACC by ACC deaminase-producing bacteria since the enzyme ACC deaminase is localized inside the bacterial cells and ACC is exuded into the rhizosphere from plant roots. In the present article, we proposed candidate attractants involved in the transfer of ACC into ACC deaminase-producing bacteria. Additionally, we discussed the importance and relation of these candidate attractants with ACC deaminase under abiotic stress conditions. KEY POINTS: • The ethylene precursor, ACC, exude from plant tissues under abiotic stresses • ACC deaminase activity of PGPR localized in the cytoplasm and periplasm of bacteria • Proposed candidate attractants for the transfer and equilibrium of exuded ACC.


Assuntos
Carbono-Carbono Liases , Rizosfera , Bactérias/genética , Desenvolvimento Vegetal , Raízes de Plantas
13.
Curr Microbiol ; 79(6): 159, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416548

RESUMO

The role of the most fungal endophytes in the host plant growth and production of metabolites under stress conditions is still unknown. Fungal endophytes occur in almost all plants to benefit the host plants exposed to biotic and abiotic stress. In the present work, we investigated salt (NaCl) stress alleviation capability of a fungal endophyte (Porostereum spadiceum-AGH786). The culture filtrate (CF: 1.5 mL.) of P. spadiceum-AGH786 contained IAA (158 µg/ml), SA (29.3 µg/ml), proline (114.6 µg/ml), phenols (167.4 µg/ml), lipids (71.4 µg/ml), sugar (133.2 µg/ml), flavonoids (105.04 µg/ml). Smaller amounts of organic acids, such as butyric acid (5.8 µg/ml), formic acid (2.34 µg/ml), succinic acid (2.02 µg/ml), and quinic acid (2.25 µg/ml) were also found in CF of P. spadiceum-AGH786. Similarly, the CF displayed antioxidant activity in 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Moreover, wheat plants colonized by P. spadiceum-AGH786 showed significantly (P = 0.05) higher polyphenol oxidases activity (2.2 mg/g DW) under normal conditions as compared to the NaCl-treated plants. We also observed that P. spadiceum-AGH786 improved biomass (0.30 g) of wheat plants subjected to 140 mM NaCl stress. The results conclude that the wheat plant colonization by P. spadiceum-AGH786 greatly improved the plant growth under 70 mM and 140 mM NaCl stress. Thus, the biomass of the P. Spadiceum-AGH786 can be used in saline soil to help the host plants.


Assuntos
Polyporales , Triticum , Estresse Salino , Cloreto de Sódio/metabolismo , Triticum/metabolismo
14.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628120

RESUMO

In the signal transduction network, from the perception of stress signals to stress-responsive gene expression, various transcription factors and cis-regulatory elements in stress-responsive promoters coordinate plant adaptation to abiotic stresses. Among the AP2/ERF transcription factor family, group VII ERF (ERF-VII) genes, such as RAP2.12, RAP2.2, RAP2.3, AtERF73/HRE1, and AtERF71/HRE2, are known to be involved in the response to hypoxia in Arabidopsis. Notably, HRE2 has been reported to be involved in responses to hypoxia and osmotic stress. In this study, we dissected HRE2 promoter to identify hypoxia- and salt stress-responsive region(s). The analysis of the promoter deletion series of HRE2 using firefly luciferase and GUS as reporter genes indicated that the -116 to -2 region is responsible for both hypoxia and salt stress responses. Using yeast one-hybrid screening, we isolated HAT22/ABIG1, a member of the HD-Zip II subfamily, which binds to the -116 to -2 region of HRE2 promoter. Interestingly, HAT22/ABIG1 repressed the transcription of HRE2 via the EAR motif located in the N-terminal region of HAT22/ABIG1. HAT22/ABIG1 bound to the 5'-AATGATA-3' sequence, HD-Zip II-binding-like cis-regulatory element, in the -116 to -2 region of HRE2 promoter. Our findings demonstrate that the -116 to -2 region of HRE2 promoter contains both positive and negative cis-regulatory elements, which may regulate the expression of HRE2 in responses to hypoxia and salt stress and that HAT22/ABIG1 negatively regulates HRE2 transcription by binding to the HD-Zip II-binding-like element in the promoter region.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Hipóxia/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163496

RESUMO

CCCH zinc finger proteins are a large protein family and are classified as either tandem CCCH zinc finger (TZF) or non-TZF proteins. The roles of TZF genes in several plants have been well determined, whereas the functions of many non-TZF genes in plants remain uncharacterized. Herein, we describe biological and molecular functions of AtC3H12, an Arabidopsis non-TZF protein containing three CCCH zinc finger motifs. AtC3H12 has orthologs in several plant species but has no paralog in Arabidopsis. AtC3H12-overexpressing transgenic plants (OXs) germinated slower than wild-type (WT) plants, whereas atc3h12 mutants germinated faster than WT plants. The fresh weight (FW) and primary root lengths of AtC3H12 OX seedlings were lighter and shorter than those of WT seedlings, respectively. In contrast, FW and primary root lengths of atc3h12 seedlings were heavier and longer than those of WT seedlings, respectively. AtC3H12 was localized in the nucleus and displayed transactivation activity in both yeast and Arabidopsis. We found that the 97-197 aa region of AtC3H12 is an important part for its transactivation activity. Detection of expression levels and analysis of Arabidopsis transgenic plants harboring a PAtC3H12::GUS construct showed that AtC3H12 expression increases as the Arabidopsis seedlings develop. Taken together, our results demonstrate that AtC3H12 negatively affects seed germination and seedling development as a nuclear transcriptional activator in Arabidopsis. To our knowledge, this is the first report to show that non-TZF proteins negatively affect plant development as nuclear transcriptional activators.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Germinação , Plântula , Sementes , Transativadores , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Transporte Proteico , Protoplastos/metabolismo , Saccharomyces cerevisiae/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Frações Subcelulares/metabolismo , Fatores de Tempo , Transativadores/química , Transativadores/metabolismo , Ativação Transcricional/genética , Dedos de Zinco
16.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077126

RESUMO

Sustainable agriculture is increasingly being put in danger by environmental contamination with dangerous heavy metals (HMs), especially lead (Pb). Plants have developed a sophisticated mechanism for nitric oxide (NO) production and signaling to regulate hazardous effects of abiotic factors, including HMs. In the current study, we investigated the role of exogenously applied sodium nitroprusside (SNP, a nitric oxide (NO) donor) in ameliorating the toxic effects of lead (Pb) on rice. For this purpose, plants were subjected to 1.2 mM Pb alone and in combination with 100 µM SNP. We found that under 1.2 mM Pb stress conditions, the accumulation of oxidative stress markers, including hydrogen peroxide (H2O2) (37%), superoxide anion (O2-) (28%), malondialdehyde (MDA) (33%), and electrolyte leakage (EL) (34%), was significantly reduced via the application of 100 µM SNP. On the other hand, under the said stress of Pb, the activity of the reactive oxygen species (ROS) scavengers such as polyphenol oxidase (PPO) (60%), peroxidase (POD) (28%), catalase (CAT) (26%), superoxide dismutase (SOD) (42%), and ascorbate peroxidase (APX) (58%) was significantly increased via the application of 100 µM SNP. In addition, the application of 100 µM SNP rescued agronomic traits such as plant height (24%), number of tillers per plant (40%), and visible green pigments (44%) when the plants were exposed to 1.2 mM Pb stress. Furthermore, after exposure to 1.2 mM Pb stress, the expression of the heavy-metal stress-related genes OsPCS1 (44%), OsPCS2 (74%), OsMTP1 (83%), OsMTP5 (53%), OsMT-I-1a (31%), and OsMT-I-1b (24%) was significantly enhanced via the application of 100 µM SNP. Overall, our research evaluates that exogenously applied 100 mM SNP protects rice plants from the oxidative damage brought on by 1.2 mM Pb stress by lowering oxidative stress markers, enhancing the antioxidant system and the transcript accumulation of HMs stress-related genes.


Assuntos
Metais Pesados , Oryza , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Peróxido de Hidrogênio/metabolismo , Chumbo/farmacologia , Metais Pesados/metabolismo , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Oryza/metabolismo , Estresse Oxidativo , Plântula/metabolismo , Superóxido Dismutase/metabolismo
17.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947021

RESUMO

Despite increasing reports on the function of CCCH zinc finger proteins in plant development and stress response, the functions and molecular aspects of many non-tandem CCCH zinc finger (non-TZF) proteins remain uncharacterized. AtC3H59/ZFWD3 is an Arabidopsis non-TZF protein and belongs to the ZFWD subfamily harboring a CCCH zinc finger motif and a WD40 domain. In this study, we characterized the biological and molecular functions of AtC3H59, which is subcellularly localized in the nucleus. The seeds of AtC3H59-overexpressing transgenic plants (OXs) germinated faster than those of wild type (WT), whereas atc3h59 mutant seeds germinated slower than WT seeds. AtC3H59 OX seedlings were larger and heavier than WT seedlings, whereas atc3h59 mutant seedlings were smaller and lighter than WT seedlings. Moreover, AtC3H59 OX seedlings had longer primary root length than WT seedlings, whereas atc3h59 mutant seedlings had shorter primary root length than WT seedlings, owing to altered cell division activity in the root meristem. During seed development, AtC3H59 OXs formed larger and heavier seeds than WT. Using yeast two-hybrid screening, we isolated Desi1, a PPPDE family protein, as an interacting partner of AtC3H59. AtC3H59 and Desi1 interacted via their WD40 domain and C-terminal region, respectively, in the nucleus. Taken together, our results indicate that AtC3H59 has pleiotropic effects on seed germination, seedling development, and seed development, and interacts with Desi1 in the nucleus via its entire WD40 domain. To our knowledge, this is the first report to describe the biological functions of the ZFWD protein and Desi1 in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Sementes/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Contagem de Células , Núcleo Celular/metabolismo , Sequência Consenso , Germinação , Meristema/citologia , Família Multigênica , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Mapeamento de Interação de Proteínas , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513721

RESUMO

Epithelial ovarian cancer remains the leading cause of mortality among all gynecologic malignancies owing to recurrence and ultimate development of chemotherapy resistance in the majority of patients. In the chemotherapy-resistant ovarian cancer preclinical model, we investigated whether AZD6738 (an ataxia telangiectasia and Rad3-related (ATR) inhibitor) could synergize with belotecan (a camptothecin analog and topoisomerase I inhibitor). In vitro, both chemotherapy-resistant and chemotherapy-sensitive ovarian cancer cell lines showed synergistic anti-proliferative activity with a combination treatment of belotecan and AZD6738. The combination also demonstrated synergistic tumor inhibition in mice with a chemotherapy-resistant cell line xenograft. Mechanistically, belotecan, a DNA-damaging agent, increased phospho-ATR (pATR) and phospho-Chk1 (pChk1) in consecutive order, indicating the activation of the DNA repair system. This consequently induced G2/M arrest in the cell cycle analysis. However, when AZD6738 was added to belotecan, pATR and pChk1 induced by belotecan alone were suppressed again. A cell cycle analysis in betotecan showed a sub-G1 increase as well as a G2/M decrease, representing the release of G2/M arrest and the induction of apoptosis. In ascites-derived primary cancer cells from both chemotherapy-sensitive and -resistant ovarian cancer patients, this combination was also synergistic, providing further support for our hypothesis. The combined administration of ATR inhibitor and belotecan proved to be synergistic in our preclinical model. This combination warrants further investigation in a clinical trial, with a particular aim of overcoming chemotherapy resistance in ovarian cancer.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Camptotecina/análogos & derivados , Carcinoma Epitelial do Ovário/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Pirimidinas/farmacologia , Sulfóxidos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Carcinoma Epitelial do Ovário/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Sinergismo Farmacológico , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Indóis , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Morfolinas , Neoplasias Ovarianas/patologia , Fosforilação , Pirimidinas/uso terapêutico , Sulfonamidas , Sulfóxidos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111079

RESUMO

Previously, we reported that overexpression of AtRH17, an Arabidopsis DEAD-box RNA helicase gene, confers salt stress-tolerance via a pathway other than the well-known salt stress-responsive pathways. To decipher the salt stress-responsive pathway in AtRH17-overexpressing transgenic plants (OXs), we performed RNA-Sequencing and identified 397 differentially expressed genes between wild type (WT) and AtRH17 OXs. Among them, 286 genes were upregulated and 111 genes were downregulated in AtRH17 OXs relative to WT. Gene ontology annotation enrichment and KEGG pathway analysis showed that the 397 upregulated and downregulated genes are involved in various biological functions including secretion, signaling, detoxification, metabolic pathways, catabolic pathways, and biosynthesis of secondary metabolites as well as in stress responses. Genevestigator analysis of the upregulated genes showed that nine genes, namely, LEA4-5, GSTF6, DIN2/BGLU30, TSPO, GSTF7, LEA18, HAI1, ABR, and LTI30, were upregulated in Arabidopsis under salt, osmotic, and drought stress conditions. In particular, the expression levels of LEA4-5, TSPO, and ABR were higher in AtRH17 OXs than in WT under salt stress condition. Taken together, our results suggest that a high AtRH17 expression confers salt stress-tolerance through a novel salt stress-responsive pathway involving nine genes, other than the well-known ABA-dependent and ABA-independent pathways.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA-Seq/métodos , Estresse Salino/genética , Secas , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Pressão Osmótica , Plantas Geneticamente Modificadas/genética , Estresse Salino/fisiologia , Tolerância ao Sal , Transcriptoma
20.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977426

RESUMO

AtERF73/HRE1 is an AP2/ERF transcription factor in Arabidopsis and has two distinct alternative splicing variants, HRE1α and HRE1ß. In this study, we examined the differences between the molecular functions of HRE1α and HRE1ß. We found that HRE1α and HRE1ß are both involved in hypoxia response and root development and have transactivation activity. Two conserved motifs in the C-terminal region of HRE1α and HRE1ß, EELL and LWSY-like, contributed to their transactivation activity, specifically the four E residues in the EELL motif and the MGLWS amino acid sequence at the end of the LWSY-like motif. The N-terminal region of HRE1ß also showed transactivation activity, mediated by the VDDG motif, whereas that of HRE1α did not. The transactivation activity of HRE1ß was stronger than that of HRE1α in Arabidopsis protoplasts. Both transcription factors transactivated downstream genes via the GCC box. RNA-sequencing analysis further supported that both HRE1α and HRE1ß might regulate gene expression associated with the hypoxia stress response, although they may transactivate different subsets of genes in downstream pathways. Our results, together with previous studies, suggested that HRE1α and HRE1ß differentially transactivate downstream genes in hypoxia response and root development in Arabidopsis.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Protoplastos/metabolismo , Transativadores/biossíntese , Ativação Transcricional , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA