Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3029, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292444

RESUMO

With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, even for basic biofabricated building blocks. Here we investigate mechanical behaviours of 3D printed microbeams made from living cells and extracellular matrix, bioprinting these simple structural elements into a 3D culture medium made from packed microgels, creating a mechanically controlled environment that allows the beams to evolve under cell-generated forces. By varying the properties of the beams and the surrounding microgel medium, we explore the mechanical behaviours exhibited by these structures. We observe buckling, axial contraction, failure, and total static stability, and we develop mechanical models of cell-ECM microbeam mechanics. We envision these models and their generalizations to other fundamental 3D shapes to facilitate the predictable design of biofabricated structures using simple building blocks in the future.


Assuntos
Bioimpressão/métodos , Técnicas de Cultura de Células/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Resinas Acrílicas/química , Animais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Matriz Extracelular , Géis/química , Teste de Materiais , Metacrilatos/química , Camundongos , Células NIH 3T3
2.
Nat Commun ; 9(1): 4313, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333482

RESUMO

Immune checkpoint blockade using anti-PD-1 monoclonal antibodies has shown considerable promise in the treatment of solid tumors, but brain tumors remain notoriously refractory to treatment. In CNS malignancies that are completely resistant to PD-1 blockade, we found that bone marrow-derived, lineage-negative hematopoietic stem and progenitor cells (HSCs) that express C-C chemokine receptor type 2 (CCR2+) reverses treatment resistance and sensitizes mice to curative immunotherapy. HSC transfer with PD-1 blockade increases T-cell frequency and activation within tumors in preclinical models of glioblastoma and medulloblastoma. CCR2+HSCs preferentially migrate to intracranial brain tumors and differentiate into antigen-presenting cells within the tumor microenvironment and cross-present tumor-derived antigens to CD8+ T cells. HSC transfer also rescues tumor resistance to adoptive cellular therapy in medulloblastoma and glioblastoma. Our studies demonstrate a novel role for CCR2+HSCs in overcoming brain tumor resistance to PD-1 checkpoint blockade and adoptive cellular therapy in multiple invasive brain tumor models.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Meduloblastoma/terapia , Animais , Neoplasias Encefálicas/imunologia , Diferenciação Celular , Movimento Celular , Células Dendríticas/imunologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Glioblastoma/imunologia , Ativação Linfocitária , Meduloblastoma/imunologia , Camundongos Transgênicos , Linfócitos T/fisiologia
3.
G3 (Bethesda) ; 6(4): 1107-19, 2016 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-26801648

RESUMO

The mangrove killifish, Kryptolebias marmoratus, is unique among vertebrates due to its self-fertilizing mode of reproduction involving an ovotestis. As a result, it constitutes a simplistic and desirable vertebrate model for developmental genetics as it is easily maintained, reaches sexual maturity in about 100 days, and provides a manageable number of relatively clear embryos. After the establishment and characterization of an initial mutagenesis pilot screen using N-ethyl-N-nitrosourea, a three-generation genetic screen was performed to confirm zygotic mutant allele heritability and simultaneously score for homozygous recessive mutant sterile F2 fish. From a total of 307 F2 fish screened, 10 were found to be 1° males, 16 were sterile, 92 wild-type, and the remaining 189, carriers of zygotic recessive alleles. These carriers produced 25% progeny exhibiting several zygotic phenotypes similar to those previously described in zebrafish and in the aforementioned pilot screen, as expected. Interestingly, new phenotypes such as golden yolk, no trunk, and short tail were observed. The siblings of sterile F2 mutants were used to produce an F3 generation in order to confirm familial sterility. Out of the 284 F3 fish belonging to 10 previously identified sterile families, 12 were found to be 1° males, 69 were wild-type, 83 sterile, and 120 were classified as */+ (either wild-type or carriers) with undefined genotypes. This screen provides proof of principle that K. marmoratus is a powerful vertebrate model for developmental genetics and can be used to identify mutations affecting fertility.


Assuntos
Peixes/genética , Organismos Hermafroditas/genética , Mutação , Zigoto/metabolismo , Animais , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Aptidão Genética , Testes Genéticos , Fenótipo
4.
Integr Comp Biol ; 52(6): 781-91, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22544288

RESUMO

Kryptolebias marmoratus is a synchronous hermaphroditic vertebrate that utilizes an ovotestis for reproduction. This fish develops externally, is easy to maintain, and has about a 100-day life cycle, making it a desirable developmental genetic model organism. Here, we present a pilot zygotic mutant screen utilizing the common chemical mutagen, N-ethyl-N-nitrosourea (ENU) to establish genetics in this model species. Selection of clonal stocks and optimal conditions for mutagenizing this fish are presented and the types and frequencies of zygotic mutants are documented in comparison to other fish models. Kryptolebias marmoratus is an exemplar model organism that will complement future developmental genetic screens in vertebrates.


Assuntos
Cruzamento/métodos , Ciprinodontiformes/crescimento & desenvolvimento , Ciprinodontiformes/genética , Etilnitrosoureia/farmacologia , Testes Genéticos/métodos , Mutagênese , Animais , Ciprinodontiformes/metabolismo , Feminino , Organismos Hermafroditas/efeitos dos fármacos , Organismos Hermafroditas/genética , Organismos Hermafroditas/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Zigoto/efeitos dos fármacos , Zigoto/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA