Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plant Cell Physiol ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847120

RESUMO

B-Box-containing zinc finger transcription factors (BBX) are involved in light-mediated growth, affecting processes such as hypocotyl elongation in Arabidopsis thaliana. However, the molecular and hormonal framework that regulates plant growth through BBX proteins is incomplete. Here, we demonstrate that BBX21 inhibits the hypocotyl elongation through the brassinosteroid (BR) pathway. BBX21 reduces the sensitivity to 24-epiBL, a synthetic active BR, principally at very-low concentrations in simulated shade. The biosynthesis profile of BRs showed that two active BR -brassinolide (BL) and 28-homobrassinolide (28-homoBL)- and 8 of 11 intermediates can be repressed by BBX21 under white light (WL) or simulated shade. Furthermore, BBX21 represses the expression of CYTOCHROME P450 90B1 (DWF4/CYP90B1), BRASSINOSTEROID-6-OXIDASE 1 (BR6OX1, CYP85A1) and BR6OX2 (CYP85A2) genes involved in the BR biosynthesis in WL while specifically promoting DWF4 and PHYB ACTIVATION TAGGED SUPPRESSOR 1 (CYP2B1/BAS1) expression in WL supplemented with far-red (WL+FR), a treatment that simulates shade. In addition, BBX21 represses BR signalling genes such as PACLOBUTRAZOL RESISTANCE1 (PRE1), PRE3 and ARABIDOPSIS MYB-LIKE 2 (MYBL2), and auxin-related and expansin genes, such as INDOLE-3-ACETIC ACID INDUCIBLE 1 (IAA1), IAA4 and EXPANSIN 11 (EXP11) in short-term shade. By a genetic approach we found that BBX21 acts genetically upstream of BRASSINAZOLE-RESISTANT 1 (BZR1) for the promotion of DWF4 and BAS1 gene expression in shade. We propose that BBX21 integrates the BR homeostasis and shade-light signalling allowing the fine-tuning of hypocotyl elongation in Arabidopsis.

2.
PLoS Genet ; 11(12): e1005660, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26642436

RESUMO

The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits PcG silencing by blocking the interaction of the core PRC2 with accessory components that promote its HMTase activity or its role in inhibiting transcription. ALP1 is the first example of a domesticated transposase acquiring a novel function as a PcG component. The antagonistic interaction of a modified transposase with the PcG machinery is novel and may have arisen as a means for the cognate transposon to evade host surveillance or for the host to exploit features of the transposition machinery beneficial for epigenetic regulation of gene activity.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Epigênese Genética , Complexo Repressor Polycomb 2/genética , Proteínas do Grupo Polycomb/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Filogenia , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Plântula/genética , Transposases/biossíntese , Transposases/genética
4.
Plant Physiol ; 164(3): 1527-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24492333

RESUMO

Protein phosphatases with Kelch-like domains (PPKL) are members of the phosphoprotein phosphatases family present only in plants and alveolates. PPKL have been described as positive effectors of brassinosteroid (BR) signaling in plants. Most of the evidence supporting this role has been gathered using one of the four homologs in Arabidopsis (Arabidopsis thaliana), brassinosteroid-insensitive1 suppressor (BSU1). We reappraised the roles of the other three members of the family, BSL1, BSL2, and BSL3, through phylogenetic, functional, and genetic analyses. We show that BSL1 and BSL2/BSL3 belong to two ancient evolutionary clades that have been highly conserved in land plants. In contrast, BSU1-type genes are exclusively found in the Brassicaceae and display a remarkable sequence divergence, even among closely related species. Simultaneous loss of function of the close paralogs BSL2 and BSL3 brings about a peculiar array of phenotypic alterations, but with marginal effects on BR signaling; loss of function of BSL1 is, in turn, phenotypically silent. Still, the products of these three genes account for the bulk of PPKL-related activity in Arabidopsis and together have an essential role in the early stages of development that BSU1 is unable to supplement. Our results underline the functional relevance of BSL phosphatases in plants and suggest that BSL2/BSL3 and BSU1 may have contrasting effects on BR signaling. Given that BSU1-type genes have likely undergone a functional shift and are phylogenetically restricted, we caution that inferences based on these genes to the whole family or to other species may be misleading.


Assuntos
Evolução Molecular , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Plantas/enzimologia , Plantas/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/genética , Brassinosteroides/farmacologia , Flores/anatomia & histologia , Flores/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/efeitos dos fármacos , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia
5.
Development ; 138(5): 849-59, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21270057

RESUMO

Brassinosteroids (BRs) play crucial roles in plant growth and development. Previous studies have shown that BRs promote cell elongation in vegetative organs in several plant species, but their contribution to meristem homeostasis remains unexplored. Our analyses report that both loss- and gain-of-function BR-related mutants in Arabidopsis thaliana have reduced meristem size, indicating that balanced BR signalling is needed for the optimal root growth. In the BR-insensitive bri1-116 mutant, the expression pattern of the cell division markers CYCB1;1, ICK2/KRP2 and KNOLLE revealed that a decreased mitotic activity accounts for the reduced meristem size; accordingly, this defect could be overcome by the overexpression of CYCD3;1. The activity of the quiescent centre (QC) was low in the short roots of bri1-116, as reported by cell type-specific markers and differentiation phenotypes of distal stem cells. Conversely, plants treated with the most active BR, brassinolide, or mutants with enhanced BR signalling, such as bes1-D, show a premature cell cycle exit that results in early differentiation of meristematic cells, which also negatively influence meristem size and overall root growth. In the stem cell niche, BRs promote the QC renewal and differentiation of distal stem cells. Together, our results provide evidence that BRs play a regulatory role in the control of cell-cycle progression and differentiation in the Arabidopsis root meristem.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Divisão Celular , Colestanóis/metabolismo , Meristema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Esteroides Heterocíclicos/metabolismo , Arabidopsis/citologia , Brassinosteroides , Diferenciação Celular , Meristema/citologia , Mitose , Proteínas Mutantes , Fitosteróis , Células-Tronco
7.
Plant J ; 71(5): 712-23, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22463079

RESUMO

Although multiple photoreceptors converge to control common aspects of seedling de-etiolation, we are relatively ignorant of the genes acting at or downstream of their signalling convergence. To address this issue we screened for mutants under a mixture of blue plus far-red light and identified roc1-1D. The roc1-1D mutant, showing elevated expression of the ROTAMASE CYCLOPHILIN 1 (ROC1/AtCYP18-3) gene, and partial loss-of function roc1 alleles, has defects in phytochrome A (phyA)-, cryptochrome 1 (cry1)- and phytochrome B (phyB)-mediated de-etiolation, including long hypocotyls under blue or far-red light. These mutants show elevated sensitivity to brassinosteroids in the light but not in the dark. Mutations at brassinosteroid signalling genes and the application of a brassinosteroid synthesis inhibitor eliminated the roc1 and roc1-D phenotypes. The roc1 and roc1-D mutants show altered patterns of phosphorylation of the transcription factor BES1, a known point of control of sensitivity to brassinosteroids, which correlate with the expression levels of genes directly targeted by BES1. We propose a model where perception of light by phyA, cry1 or phyB activates ROC1 (at least in part by enhancing its expression). This in turn reduces the intensity of brassinosteroid signalling and fine-tunes seedling de-etiolation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Criptocromos/metabolismo , Ciclofilinas/metabolismo , Proteínas Nucleares/metabolismo , Fitocromo A/metabolismo , Arabidopsis/genética , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA , Luz , Mutação , Fenótipo , Fosforilação
8.
J Biol Chem ; 286(26): 23441-51, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21525006

RESUMO

2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous peroxidases with important roles in cellular antioxidant defense and hydrogen peroxide-mediated signaling. Post-translational modifications of conserved cysteines cause the transition from low to high molecular weight oligomers, triggering the functional change from peroxidase to molecular chaperone. However, it remains unclear how non-covalent interactions of 2-Cys Prx with metabolites modulate the quaternary structure. Here, we disclose that ATP and Mg(2+) (ATP/Mg) promote the self-polymerization of chloroplast 2-Cys Prx (polypeptide 23.5 kDa) into soluble higher order assemblies (>2 MDa) that proceed to insoluble aggregates beyond 5 mM ATP. Remarkably, the withdrawal of ATP or Mg(2+) brings soluble oligomers and insoluble aggregates back to the native conformation without compromising the associated functions. As confirmed by transmission electron microscopy, ATP/Mg drive the toroid-like decamers (diameter 13 nm) to the formation of large sphere-like particles (diameter ∼30 nm). Circular dichroism studies on ATP-labeled 2-Cys Prx reveal that ATP/Mg enhance the proportion of ß-sheets with the concurrent decrease in the content of α-helices. In line with this observation, the formation of insoluble aggregates is strongly prevented by 2,2,2-trifluoroethanol, a cosolvent employed to induce α-helical conformations. We further find that the response of self-polymerization to ATP/Mg departs abruptly from that of the associated peroxidase and chaperone activities when two highly conserved residues, Arg(129) and Arg(152), are mutated. Collectively, our data uncover that non-covalent interactions of ATP/Mg with 2-Cys Prx modulate dynamically the quaternary structure, thereby coupling the non-redox chemistry of cell energy with redox transformations at cysteine residues.


Assuntos
Trifosfato de Adenosina/química , Cloroplastos/enzimologia , Magnésio/química , Peroxirredoxinas/química , Proteínas de Plantas/química , Multimerização Proteica , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Cloroplastos/genética , Dicroísmo Circular , Magnésio/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Dev Cell ; 57(16): 2009-2025.e6, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35901789

RESUMO

Under adverse conditions such as shade or elevated temperatures, cotyledon expansion is reduced and hypocotyl growth is promoted to optimize plant architecture. The mechanisms underlying the repression of cotyledon cell expansion remain unknown. Here, we report that the nuclear abundance of the BES1 transcription factor decreased in the cotyledons and increased in the hypocotyl in Arabidopsis thaliana under shade or warmth. Brassinosteroid levels did not follow the same trend. PIF4 and COP1 increased their nuclear abundance in both organs under shade or warmth. PIF4 directly bound the BES1 promoter to enhance its activity but indirectly reduced BES1 expression. COP1 physically interacted with the BES1 protein, promoting its proteasome degradation in the cotyledons. COP1 had the opposite effect in the hypocotyl, demonstrating organ-specific regulatory networks. Our work indicates that shade or warmth reduces BES1 activity by transcriptional and post-translational regulation to inhibit cotyledon cell expansion.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo
10.
11.
Curr Biol ; 31(21): 4860-4869.e8, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34529936

RESUMO

Brassinosteroids (BRs) play essential roles in growth and development in seed plants;1 disturbances in BR homeostasis lead to altered mitotic activity in meristems2,3 and organ boundaries4,5 and to changes in meristem determinacy.6 An intricate signaling cascade linking the perception of BRs at the plasma membrane to the regulation of master transcriptional regulators belonging to the BEH, for BES1 homologues, family7 has been described in great detail in model angiosperms. Homologs of these transcription factors are present in streptophyte algae and in land plant lineages where BR signaling or function is absent or has not yet been characterized. The genome of the bryophyte Marchantia polymorpha does not encode for BR receptors but includes one close ortholog of Arabidopsis thaliana BRI1-EMS-SUPPRESSOR 1 (AtBES1)8 and Arabidopsis thaliana BRASSINAZOLE-RESISTANT 1 (AtBZR1),9 MpBES1. Altered levels of MpBES1 severely compromised cell division and differentiation, resulting in stunted thalli that failed to differentiate adult tissues and reproductive organs. The transcriptome of Mpbes1 knockout plants revealed a significant overlap with homologous functions controlled by AtBES1 and AtBZR1, suggesting that members of this gene family share a subset of common targets. Indeed, MpBES1 behaved as a gain-of-function substitute of AtBES1/AtBZR1 when expressed in Arabidopsis, probably because it mediates conserved functions but evades the regulatory mechanisms that native counterparts are subject to. Our results show that this family of transcription factors plays an ancestral role in the control of cell division and differentiation in plants and that BR signaling likely co-opted this function and imposed additional regulatory checkpoints upon it.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Marchantia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Divisão Celular , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Marchantia/genética , Marchantia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Transcription ; 11(3-4): 100-116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936724

RESUMO

Most living organisms possess an internal timekeeping mechanism known as the circadian clock, which enhances fitness by synchronizing the internal timing of biological processes with diurnal and seasonal environmental changes. In plants, the pace of these biological rhythms relies on oscillations in the expression level of hundreds of genes tightly controlled by a group of core clock regulators and co-regulators that engage in transcriptional and translational feedback loops. In the last decade, the role of several core clock genes in the control of defense responses has been addressed, and a growing amount of evidence demonstrates that circadian regulation is relevant for plant immunity. A reciprocal connection between these pathways was also established following the observation that in Arabidopsis thaliana, as well as in crop species like tomato, plant-pathogen interactions trigger a reconfiguration of the circadian transcriptional network. In this review, we summarize the current knowledge regarding the interaction between the circadian clock and biotic stress responses at the transcriptional level, and discuss the relevance of this crosstalk in the plant-pathogen evolutionary arms race. A better understanding of these processes could aid in the development of genetic tools that improve traditional breeding practices, enhancing tolerance to plant diseases that threaten crop yield and food security all around the world.


Assuntos
Relógios Circadianos/genética , Interações Hospedeiro-Patógeno/genética , Plantas/genética , Transcrição Gênica/genética , Plantas/metabolismo , Plantas/microbiologia
13.
Curr Opin Plant Biol ; 57: 87-95, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32861054

RESUMO

Brassinosteroids (BRs) are steroid hormones that play crucial roles in plant growth, development and adaptation to shifting environmental conditions. Our current understanding of the origin, evolution and functional significance of BRs is influenced by a double-edged bias: most we know stems from studies on a single species and, on the flip side, dearth of information from a phylogenetically broad and significant array of land plants precludes well-grounded comparisons. Here, we provide an update on BR presence and sensing along land plant evolution. Furthermore, a comprehensive search in all major plant lineages reveals the widespread presence of BR-receptor related sequences, suggesting that steroid-related signals may have been functional early in the evolution of land plants.


Assuntos
Reguladores de Crescimento de Plantas , Transdução de Sinais , Brassinosteroides , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Plantas/genética
14.
BMC Genomics ; 10: 467, 2009 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-19821986

RESUMO

BACKGROUND: Melon (Cucumis melo) is a horticultural specie of significant nutritional value, which belongs to the Cucurbitaceae family, whose economic importance is second only to the Solanaceae. Its small genome of approx. 450 Mb coupled to the high genetic diversity has prompted the development of genetic tools in the last decade. However, the unprecedented existence of a transcriptomic approaches in melon, highlight the importance of designing new tools for high-throughput analysis of gene expression. RESULTS: We report the construction of an oligo-based microarray using a total of 17,510 unigenes derived from 33,418 high-quality melon ESTs. This chip is particularly enriched with genes that are expressed in fruit and during interaction with pathogens. Hybridizations for three independent experiments allowed the characterization of global gene expression profiles during fruit ripening, as well as in response to viral and fungal infections in plant cotyledons and roots, respectively. Microarray construction, statistical analyses and validation together with functional-enrichment analysis are presented in this study. CONCLUSION: The platform validation and enrichment analyses shown in our study indicate that this oligo-based microarray is amenable for future genetic and functional genomic studies of a wide range of experimental conditions in melon.


Assuntos
Cucumis melo/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Cucumis melo/fisiologia , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Frutas/genética , Frutas/fisiologia , Biblioteca Gênica , Genes de Plantas , Genoma de Planta , Análise de Sequência de DNA
15.
Front Plant Sci ; 10: 1019, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456814

RESUMO

Because of their sessile nature, plants have adopted varied strategies for growing and reproducing in an ever-changing environment. Control of mRNA levels and pre-mRNA alternative splicing are key regulatory layers that contribute to adjust and synchronize plant growth and development with environmental changes. Transcription and alternative splicing are thought to be tightly linked and coordinated, at least in part, through a network of transcriptional and splicing regulatory factors that interact with the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. One of the proteins that has been shown to play such a role in yeast and mammals is pre-mRNA-PROCESSING PROTEIN 40 (PRP40, also known as CA150, or TCERG1). In plants, members of the PRP40 family have been identified and shown to interact with the CTD of RNA Pol II, but their biological functions remain unknown. Here, we studied the role of AtPRP40C, in Arabidopsis thaliana growth, development and stress tolerance, as well as its impact on the global regulation of gene expression programs. We found that the prp40c knockout mutants display a late-flowering phenotype under long day conditions, associated with minor alterations in red light signaling. An RNA-seq based transcriptome analysis revealed differentially expressed genes related to biotic stress responses and also differentially expressed as well as differentially spliced genes associated with abiotic stress responses. Indeed, the characterization of stress responses in prp40c mutants revealed an increased sensitivity to salt stress and an enhanced tolerance to Pseudomonas syringae pv. maculicola (Psm) infections. This constitutes the most thorough analysis of the transcriptome of a prp40 mutant in any organism, as well as the first characterization of the molecular and physiological roles of a member of the PRP40 protein family in plants. Our results suggest that PRP40C is an important factor linking the regulation of gene expression programs to the modulation of plant growth, development, and stress responses.

16.
Genes (Basel) ; 10(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577529

RESUMO

Light signaling pathways interact with the circadian clock to help organisms synchronize physiological and developmental processes to periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Members of the family of NIGHT LIGHT⁻INDUCIBLE AND CLOCK-REGULATED (LNK) genes play key roles linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. Particularly, LNK1 and LNK2 were shown to control circadian rhythms, photomorphogenic responses, and photoperiod-dependent flowering time. Here we analyze the role of the four members of the LNK family in Arabidopsis in these processes. We found that depletion of the closely related LNK3 and LNK4 in a lnk1;lnk2 mutant background affects circadian rhythms, but not other clock-regulated processes such as flowering time and seedling photomorphogenesis. Nevertheless, plants defective in all LNK genes (lnkQ quadruple mutants) display developmental alterations that lead to increased rosette size, biomass, and enhanced phototropic responses. Our work indicates that members of the LNK family have both distinctive and partially overlapping functions, and are an essential link to orchestrate light-regulated developmental processes.

17.
Curr Opin Plant Biol ; 35: 84-90, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27912128

RESUMO

Circadian clocks are molecular devices that help adjust organisms to periodic environmental changes. Although formally described as self-sustaining oscillators that are synchronized by external cues and produce defined outputs, it is increasingly clear that physiological processes not only are regulated by, but also regulate the function of the clock. We discuss three recent examples of the intimate relationships between the function of the clock, growth and metabolism in photosynthetic organisms: the daily tracking of sun by sunflowers, the fine computations plants and cyanobacteria perform to manage carbon reserves and prevent starvation, and the changes in clock parameters that went along with domestication of tomato.


Assuntos
Carbono/metabolismo , Relógios Circadianos/fisiologia , Cianobactérias/fisiologia , Domesticação , Fenômenos Fisiológicos Vegetais , Luz Solar , Helianthus/fisiologia , Solanum lycopersicum/fisiologia , Desenvolvimento Vegetal
18.
Genes Dev ; 18(4): 448-60, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14977918

RESUMO

Perception of the plant steroid hormone brassinolide (BL) by the membrane-associated receptor kinase BRI1 triggers the dephosphorylation and accumulation in the nucleus of the transcriptional modulators BES1 and BZR1. We identified bsu1-1D as a dominant suppressor of bri1 in A abidopsis. BSU1 encodes a nuclear-localized serine-threonine protein phosphatase with an N-terminal Kelch-repeat domain, and is preferentially expressed in elongating cells. BSU1 is able to modulate the phosphorylation state of BES1, counter acting the action of the glycogen synthase kinase-3 BIN2, and leading to inc eased steady-state levels of dephosphorylated BES1. BSU1 belongs to a small gene family; loss-of-function analyses unravel the extent of functional overlap among members of the family and confirm the role of these phosphatases in the control of cell elongation by BL. Our data indicate that BES1 is subject to antagonistic phosphorylation and dephosphorylation reactions in the nucleus, which fine-tune the amplitude of the response to BL.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Núcleo Celular/enzimologia , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fitosteróis/farmacologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Folhas de Planta/genética , Regiões Promotoras Genéticas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
19.
Cell ; 109(2): 181-91, 2002 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-12007405

RESUMO

Plant steroid hormones, known as brassinosteroids (BRs), signal through a plasma membrane localized receptor kinase BRI1. We identified bes1, a semidominant suppressor of bri1, which exhibits constitutive BR response phenotypes including long and bending petioles, curly leaves, accelerated senescence, and constitutive expression of BR-response genes. BES1 accumulates in the nucleus in response to BRs. BES1 is phosphorylated and appears to be destabilized by the glycogen synthase kinase-3 (GSK-3) BIN2, a negative regulator of the BR pathway. These results establish a signaling cascade for BRs with similarities to the Wnt pathway, in which signaling through cell surface receptors leads to inactivation of a GSK-3 allowing accumulation of a nuclear protein that regulates target gene expression.


Assuntos
Proteínas de Arabidopsis/isolamento & purificação , Arabidopsis/crescimento & desenvolvimento , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas Nucleares/isolamento & purificação , Fitosteróis/metabolismo , Caules de Planta/crescimento & desenvolvimento , Sequência de Aminoácidos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Proteínas de Ligação a DNA , Regulação para Baixo/genética , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Regulação para Cima/genética
20.
Proc Natl Acad Sci U S A ; 99(15): 10191-6, 2002 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-12119417

RESUMO

Plant steroid hormones, brassinosteroids (BRs), play important roles throughout plant growth and development. Plants defective in BR biosynthesis or perception display cell elongation defects and severe dwarfism. Two dwarf mutants named bin3 and bin5 with identical phenotypes to each other display some characteristics of BR mutants and are partially insensitive to exogenously applied BRs. In the dark, bin3 or bin5 seedlings are de-etiolated with short hypocotyls and open cotyledons. Light-grown mutant plants are dwarfs with short petioles, epinastic leaves, short inflorescence stems, and reduced apical dominance. We cloned BIN3 and BIN5 and show that BIN5 is one of three putative Arabidopsis SPO11 homologs (AtSPO11-3) that also shares significant homology to archaebacterial topoisomerase VI (TOP6) subunit A, whereas BIN3 represents a putative eukaryotic homolog of TOP6B. The pleiotropic dwarf phenotypes of bin5 establish that, unlike all of the other SPO11 homologs that are involved in meiosis, BIN5/AtSPO11-3 plays a major role during somatic development. Furthermore, microarray analysis of the expression of about 5500 genes in bin3 or bin5 mutants indicates that about 321 genes are down-regulated in both of the mutants, including 18 of 30 BR-induced genes. These results suggest that BIN3 and BIN5 may constitute an Arabidopsis topoisomerase VI that modulates expression of many genes, including those regulated by BRs.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Drosophila , Fatores de Transcrição , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas Arqueais , Proteínas de Transporte/química , Proteínas de Transporte/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Insetos/química , Proteínas de Insetos/genética , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Fitosteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA