Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nature ; 585(7825): 414-419, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641828

RESUMO

Zika virus (ZIKV) belongs to the family Flaviviridae, and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurological disorders and replicates efficiently in reproductive tissues1-3. Here we show that the envelope protein (E) of ZIKV is polyubiquitinated by the E3 ubiquitin ligase TRIM7 through Lys63 (K63)-linked polyubiquitination. Accordingly, ZIKV replicates less efficiently in the brain and reproductive tissues of Trim7-/- mice. Ubiquitinated E is present on infectious virions of ZIKV when they are released from specific cell types, and enhances virus attachment and entry into cells. Specifically, K63-linked polyubiquitin chains directly interact with the TIM1 (also known as HAVCR1) receptor of host cells, which enhances virus entry in cells as well as in brain tissue in vivo. Recombinant ZIKV mutants that lack ubiquitination are attenuated in human cells and in wild-type mice, but not in live mosquitoes. Monoclonal antibodies against K63-linked polyubiquitin specifically neutralize ZIKV and reduce viraemia in mice. Our results demonstrate that the ubiquitination of ZIKV E is an important determinant of virus entry, tropism and pathogenesis.


Assuntos
Ubiquitinação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Zika virus/metabolismo , Zika virus/patogenicidade , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Encéfalo/metabolismo , Linhagem Celular , Culicidae/citologia , Culicidae/virologia , Endossomos/metabolismo , Feminino , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Masculino , Fusão de Membrana , Camundongos , Especificidade de Órgãos , Poliubiquitina/imunologia , Poliubiquitina/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Tropismo Viral , Viremia/imunologia , Viremia/prevenção & controle , Viremia/virologia , Replicação Viral , Zika virus/química , Zika virus/genética , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
2.
Nucleic Acids Res ; 52(2): 831-843, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38084901

RESUMO

The large dsDNA viruses replicate their DNA as concatemers consisting of multiple covalently linked genomes. Genome packaging is catalyzed by a terminase enzyme that excises individual genomes from concatemers and packages them into preassembled procapsids. These disparate tasks are catalyzed by terminase alternating between two distinct states-a stable nuclease that excises individual genomes and a dynamic motor that translocates DNA into the procapsid. It was proposed that bacteriophage λ terminase assembles as an anti-parallel dimer-of-dimers nuclease complex at the packaging initiation site. In contrast, all characterized packaging motors are composed of five terminase subunits bound to the procapsid in a parallel orientation. Here, we describe biophysical and structural characterization of the λ holoenzyme complex assembled in solution. Analytical ultracentrifugation, small angle X-ray scattering, and native mass spectrometry indicate that 5 subunits assemble a cone-shaped terminase complex. Classification of cryoEM images reveals starfish-like rings with skewed pentameric symmetry and one special subunit. We propose a model wherein nuclease domains of two subunits alternate between a dimeric head-to-head arrangement for genome maturation and a fully parallel arrangement during genome packaging. Given that genome packaging is strongly conserved in both prokaryotic and eukaryotic viruses, the results have broad biological implications.


Assuntos
Empacotamento do Genoma Viral , Montagem de Vírus , Montagem de Vírus/genética , Bacteriófago lambda/genética , Endodesoxirribonucleases/metabolismo , DNA , DNA Viral/metabolismo , Empacotamento do DNA
3.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33888587

RESUMO

Many viruses utilize ringed packaging ATPases to translocate double-stranded DNA into procapsids during replication. A critical step in the mechanochemical cycle of such ATPases is ATP binding, which causes a subunit within the motor to grip DNA tightly. Here, we probe the underlying molecular mechanism by which ATP binding is coupled to DNA gripping and show that a glutamate-switch residue found in AAA+ enzymes is central to this coupling in viral packaging ATPases. Using free-energy landscapes computed through molecular dynamics simulations, we determined the stable conformational state of the ATPase active site in ATP- and ADP-bound states. Our results show that the catalytic glutamate residue transitions from an active to an inactive pose upon ATP hydrolysis and that a residue assigned as the glutamate switch is necessary for regulating this transition. Furthermore, we identified via mutual information analyses the intramolecular signaling pathway mediated by the glutamate switch that is responsible for coupling ATP binding to conformational transitions of DNA-gripping motifs. We corroborated these predictions with both structural and functional experimental measurements. Specifically, we showed that the crystal structure of the ADP-bound P74-26 packaging ATPase is consistent with the structural coupling predicted from simulations, and we further showed that disrupting the predicted signaling pathway indeed decouples ATPase activity from DNA translocation activity in the φ29 DNA packaging motor. Our work thus establishes a signaling pathway that couples chemical and mechanical events in viral DNA packaging motors.


Assuntos
Adenosina Trifosfatases/metabolismo , Ácido Glutâmico/metabolismo , Simulação de Dinâmica Molecular , Empacotamento do Genoma Viral , Transdução de Sinais
4.
Nucleic Acids Res ; 49(11): 6474-6488, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34050764

RESUMO

Double-stranded DNA viruses package their genomes into pre-assembled capsids using virally-encoded ASCE ATPase ring motors. We present the first atomic-resolution crystal structure of a multimeric ring form of a viral dsDNA packaging motor, the ATPase of the asccφ28 phage, and characterize its atomic-level dynamics via long timescale molecular dynamics simulations. Based on these results, and previous single-molecule data and cryo-EM reconstruction of the homologous φ29 motor, we propose an overall packaging model that is driven by helical-to-planar transitions of the ring motor. These transitions are coordinated by inter-subunit interactions that regulate catalytic and force-generating events. Stepwise ATP binding to individual subunits increase their affinity for the helical DNA phosphate backbone, resulting in distortion away from the planar ring towards a helical configuration, inducing mechanical strain. Subsequent sequential hydrolysis events alleviate the accumulated mechanical strain, allowing a stepwise return of the motor to the planar conformation, translocating DNA in the process. This type of helical-to-planar mechanism could serve as a general framework for ring ATPases.


Assuntos
Adenosina Trifosfatases/química , Empacotamento do Genoma Viral , Proteínas Virais/química , Adenosina/química , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Arginina/química , Fagos Bacilares/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Fosfatos/química , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Proteínas Virais/metabolismo
5.
Nucleic Acids Res ; 48(20): 11737-11749, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33089330

RESUMO

Double-stranded DNA viruses use ATP-powered molecular motors to package their genomic DNA. To ensure efficient genome encapsidation, these motors regulate functional transitions between initiation, translocation, and termination modes. Here, we report structural and biophysical analyses of the C-terminal domain of the bacteriophage phi29 ATPase (CTD) that suggest a structural basis for these functional transitions. Sedimentation experiments show that the inter-domain linker in the full-length protein promotes oligomerization and thus may play a role in assembly of the functional motor. The NMR solution structure of the CTD indicates it is a vestigial nuclease domain that likely evolved from conserved nuclease domains in phage terminases. Despite the loss of nuclease activity, fluorescence binding assays confirm the CTD retains its DNA binding capabilities and fitting the CTD into cryoEM density of the phi29 motor shows that the CTD directly binds DNA. However, the interacting residues differ from those identified by NMR titration in solution, suggesting that packaging motors undergo conformational changes to transition between initiation, translocation, and termination. Taken together, these results provide insight into the evolution of functional transitions in viral dsDNA packaging motors.


Assuntos
Empacotamento do DNA , DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Empacotamento do Genoma Viral , Proteínas Virais/química , Fagos Bacilares/química , Fagos Bacilares/genética , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Esterases/química , Evolução Molecular , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(31): 7961-7966, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012596

RESUMO

Subunits in multimeric ring-shaped motors must coordinate their activities to ensure correct and efficient performance of their mechanical tasks. Here, we study WT and arginine finger mutants of the pentameric bacteriophage φ29 DNA packaging motor. Our results reveal the molecular interactions necessary for the coordination of ADP-ATP exchange and ATP hydrolysis of the motor's biphasic mechanochemical cycle. We show that two distinct regulatory mechanisms determine this coordination. In the first mechanism, the DNA up-regulates a single subunit's catalytic activity, transforming it into a global regulator that initiates the nucleotide exchange phase and the hydrolysis phase. In the second, an arginine finger in each subunit promotes ADP-ATP exchange and ATP hydrolysis of its neighbor. Accordingly, we suggest that the subunits perform the roles described for GDP exchange factors and GTPase-activating proteins observed in small GTPases. We propose that these mechanisms are fundamental to intersubunit coordination and are likely present in other ring ATPases.


Assuntos
Adenosina Trifosfatases , Fagos Bacilares/enzimologia , Modelos Biológicos , Proteínas Virais , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
7.
J Virol ; 88(8): 3986-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24403593

RESUMO

UNLABELLED: The tailed double-stranded DNA (dsDNA) bacteriophage 29 packages its 19.3-kbp genome into a preassembled procapsid structure by using a transiently assembled phage-encoded molecular motor. This process is remarkable considering that compaction of DNA to near-crystalline densities within the confined space of the capsid requires that the packaging motor work against significant entropic, enthalpic, and DNA-bending energies. The motor consists of three phage-encoded components: the dodecameric connector protein gp10, an oligomeric RNA molecule known as the prohead RNA (pRNA), and the homomeric ring ATPase gp16. Although atomic resolution structures of the connector and different pRNA subdomains have been determined, the mechanism of self-assembly and the resulting stoichiometry of the various motor components on the phage capsid have been the subject of considerable controversy. Here a subnanometer asymmetric cryoelectron microscopy (cryo-EM) reconstruction of a connector-pRNA complex at a unique vertex of the procapsid conclusively demonstrates the pentameric symmetry of the pRNA and illuminates the relative arrangement of the connector and the pRNA. Additionally, a combination of biochemical and cryo-EM analyses of motor assembly intermediates suggests a sequence of molecular events that constitute the pathway by which the motor assembles on the head, thereby reconciling conflicting data regarding pRNA assembly and stoichiometry. Taken together, these data provide new insight into the assembly, structure, and mechanism of a complex molecular machine. IMPORTANCE: Viruses consist of a protein shell, or capsid, that protects and surrounds their genetic material. Thus, genome encapsidation is a fundamental and essential step in the life cycle of any virus. In dsDNA viruses, powerful molecular motors essentially pump the viral DNA into a preformed protein shell. This article describes how a viral dsDNA packaging motor self-assembles on the viral capsid and provides insight into its mechanism of action.


Assuntos
Fagos Bacilares/fisiologia , Bacillus subtilis/virologia , Empacotamento do DNA , DNA Viral/metabolismo , DNA/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Fagos Bacilares/química , Fagos Bacilares/genética , DNA/genética , DNA Viral/genética , Multimerização Proteica , Proteínas Virais/química , Proteínas Virais/genética
8.
Nucleic Acids Res ; 40(19): 9953-63, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22879380

RESUMO

Bacteriophage DNA packaging motors translocate their genomic DNA into viral heads, compacting it to near-crystalline density. The Bacillus subtilis phage 29 has a unique ring of RNA (pRNA) that is an essential component of its motor, serving as a scaffold for the packaging ATPase. Previously, deletion of a three-base bulge (18-CCA-20) in the pRNA A-helix was shown to abolish packaging activity. Here, we solved the structure of this crucial bulge by nuclear magnetic resonance (NMR) using a 27mer RNA fragment containing the bulge (27b). The bulge actually involves five nucleotides (17-UCCA-20 and A100), as U17 and A100 are not base paired as predicted. Mutational analysis showed these newly identified bulge residues are important for DNA packaging. The bulge introduces a 33-35° bend in the helical axis, and inter-helical motion around this bend appears to be restricted. A model of the functional 120b pRNA was generated using a 27b NMR structure and the crystal structure of the 66b prohead-binding domain. Fitting this model into a cryo-EM map generated a pentameric pRNA structure; five helices projecting from the pRNA ring resemble an RNA claw. Biochemical analysis suggested that this shape is important for coordinated motor action required for DNA translocation.


Assuntos
Fagos Bacilares/genética , Empacotamento do DNA , RNA Viral/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Fagos Bacilares/enzimologia , Sequência de Bases , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Proteínas Virais/metabolismo
10.
J Virol ; 86(21): 11625-32, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22896620

RESUMO

The double-stranded-DNA bacteriophages employ powerful molecular motors to translocate genomic DNA into preformed capsids during the packaging step in phage assembly. Bacillus subtilis bacteriophage 29 has an oligomeric prohead RNA (pRNA) that is an essential component of its packaging motor. The crystal structure of the pRNA-prohead binding domain suggested that a three-helix junction constitutes both a flexible region and part of a rigid RNA superhelix. Here we define the functional role of the three-helix junction in motor assembly and DNA packaging. Deletion mutagenesis showed that a U-rich region comprising two sides of the junction plays a role in the stable assembly of pRNA to the prohead. The retention of at least two bulged residues in this region was essential for pRNA binding and thereby subsequent DNA packaging. Additional deletions resulted in the loss of the ability of pRNA to multimerize in solution, consistent with the hypothesis that this region provides the flexibility required for pRNA oligomerization and prohead binding. The third side of the junction is part of a large RNA superhelix that spans the motor. The insertion of bases into this feature resulted in a loss of DNA packaging and an impairment of initiation complex assembly. Additionally, cryo-electron microscopy (cryoEM) analysis of third-side insertion mutants showed an increased flexibility of the helix that binds the ATPase, suggesting that the rigidity of the RNA superhelix is necessary for efficient motor assembly and function. These results highlight the critical role of the three-way junction in bridging the prohead binding and ATPase assembly functions of pRNA.


Assuntos
Fagos Bacilares/fisiologia , Bacillus subtilis/virologia , Empacotamento do DNA , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Fagos Bacilares/ultraestrutura , Microscopia Crioeletrônica , Análise Mutacional de DNA , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Deleção de Sequência , Proteínas Virais/ultraestrutura
11.
Bioinformatics ; 28(24): 3265-73, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23131460

RESUMO

MOTIVATION: Owing to the size and complexity of large multi-component biological assemblies, the most tractable approach to determining their atomic structure is often to fit high-resolution radiographic or nuclear magnetic resonance structures of isolated components into lower resolution electron density maps of the larger assembly obtained using cryo-electron microscopy (cryo-EM). This hybrid approach to structure determination requires that an atomic resolution structure of each component, or a suitable homolog, is available. If neither is available, then the amount of structural information regarding that component is limited by the resolution of the cryo-EM map. However, even if a suitable homolog cannot be identified using sequence analysis, a search for structural homologs should still be performed because structural homology often persists throughout evolution even when sequence homology is undetectable, As macromolecules can often be described as a collection of independently folded domains, one way of searching for structural homologs would be to systematically fit representative domain structures from a protein domain database into the medium/low resolution cryo-EM map and return the best fits. Taken together, the best fitting non-overlapping structures would constitute a 'mosaic' backbone model of the assembly that could aid map interpretation and illuminate biological function. RESULT: Using the computational principles of the Scale-Invariant Feature Transform (SIFT), we have developed FOLD-EM-a computational tool that can identify folded macromolecular domains in medium to low resolution (4-15 Å) electron density maps and return a model of the constituent polypeptides in a fully automated fashion. As a by-product, FOLD-EM can also do flexible multi-domain fitting that may provide insight into conformational changes that occur in macromolecular assemblies.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Estrutura Terciária de Proteína , Software , Algoritmos , Chaperonina 60/química , Bases de Dados de Proteínas , Elétrons , Substâncias Macromoleculares/química , Simulação de Acoplamento Molecular , Dobramento de Proteína , Homologia Estrutural de Proteína
12.
Mol Cell Proteomics ; 9(8): 1764-73, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20124351

RESUMO

The molecular mechanism of scaffolding protein-mediated incorporation of one and only one DNA packaging motor/connector dodecamer at a unique vertex during lambdoid phage assembly has remained elusive because of the lack of structural information on how the connector and scaffolding proteins interact. We assembled and characterized a phi29 connector-scaffolding complex, which can be incorporated into procapsids during in vitro assembly. Native mass spectrometry revealed that the connector binds at most 12 scaffolding molecules, likely organized as six dimers. A data-driven docking model, using input from chemical cross-linking and mutagenesis data, suggested an interaction between the scaffolding protein and the exterior of the wide domain of the connector dodecamer. The connector binding region of the scaffolding protein lies upstream of the capsid binding region located at the C terminus. This arrangement allows the C terminus of scaffolding protein within the complex to both recruit capsid subunits and mediate the incorporation of the single connector vertex.


Assuntos
Fagos Bacilares/fisiologia , Espectrometria de Massas , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Montagem de Vírus/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Capsídeo/química , Proteínas do Capsídeo/química , Reagentes de Ligações Cruzadas , Cristalografia por Raios X , Proteínas Motores Moleculares/química , Dados de Sequência Molecular , Peptídeos/química , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes
13.
Adv Exp Med Biol ; 726: 511-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22297529

RESUMO

The tailed dsDNA bacteriophage ø29 packages its 19.3-kb genome into a pre-assembled prolate icosahedral procapsid structure using a phage-encoded macromolecular motor. This process is remarkable considering that compaction of DNA to near crystalline densities within the confined space of the capsid requires that the motor work against considerable entropic, enthalpic, and DNA bending energies. The heart of the bacteriophage ø29 packaging motor consists of three macromolecular components: the connector protein, an RNA molecule known as the pRNA, and an ATPase. The pRNA is thus far unique to ø29, but the connector and ATPase are homologous to portal and terminase proteins, respectively, in other tailed dsDNA bacteriophages. Despite decades of effort and a wealth of genetic, biochemical, biophysical, structural, and single particle data, the mechanism of DNA packaging in bacteriophage ø29 remains elusive. In this chapter, we describe the development of a highly efficient in vitro DNA packaging system for ø29, review the data available for each individual macromolecular component in the packaging motor, and present and evaluate various packaging mechanisms that have been proposed to explain the available data.


Assuntos
Fagos Bacilares/genética , Fagos Bacilares/metabolismo , Empacotamento do DNA , DNA/química , DNA/metabolismo , Proteínas Virais/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Fagos Bacilares/química , DNA Viral/química , DNA Viral/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética
14.
J Mol Biol ; 434(19): 167719, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35820453

RESUMO

Capsid assembly pathways are strongly conserved in the complex dsDNA viruses, where major capsid proteins (MCP) self-assemble into icosahedral procapsid shells, chaperoned by a scaffolding protein. Without a scaffold, the capsid proteins aggregate and form aberrant structures. This, coupled with the rapid co-polymerization of MCP and scaffolding proteins, has thwarted characterization of the earliest steps in shell assembly. Here we interrogate the structure and biophysical properties of a soluble, assembly-deficient phage lambda major capsid protein, MCP(W308A). The mutant protein is folded, soluble to high concentrations and binds to the scaffolding protein in an apparent SP2:MCP(W308A)1 stoichiometry but does not assemble beyond this initiating complex. The MCP(W308A) crystal structure was solved to 2.7 Å revealing the canonical HK97 fold in a "pre-assembly" conformation featuring the conserved N-arm and E-loops folded into the body of the protein. Structural, biophysical and computational analyses suggest that MCP(W308A) is thermodynamically trapped in this pre-assembly conformation precluding self-association interactions required for shell assembly. A model is described wherein dynamic interactions between MCP proteins play an essential role in high fidelity viral shell assembly. Scaffold-chaperoned MCP polymerization is a strongly conserved process in all the large dsDNA viruses and our results provide insight into this primordial complex in solution and have broad biological significance in our understanding of virus assembly mechanisms.


Assuntos
Bacteriófago lambda , Proteínas do Capsídeo , Capsídeo , Montagem de Vírus , Bacteriófago lambda/fisiologia , Capsídeo/química , Proteínas do Capsídeo/química , Dobramento de Proteína
15.
Proc Natl Acad Sci U S A ; 105(28): 9552-7, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18606992

RESUMO

The small bacteriophage phi29 must penetrate the approximately 250-A thick external peptidoglycan cell wall and cell membrane of the Gram-positive Bacillus subtilis, before ejecting its dsDNA genome through its tail into the bacterial cytoplasm. The tail of bacteriophage phi29 is noncontractile and approximately 380 A long. A 1.8-A resolution crystal structure of gene product 13 (gp13) shows that this tail protein has spatially well separated N- and C-terminal domains, whose structures resemble lysozyme-like enzymes and metallo-endopeptidases, respectively. CryoEM reconstructions of the WT bacteriophage and mutant bacteriophages missing some or most of gp13 shows that this enzyme is located at the distal end of the phi29 tail knob. This finding suggests that gp13 functions as a tail-associated, peptidoglycan-degrading enzyme able to cleave both the polysaccharide backbone and peptide cross-links of the peptidoglycan cell wall. Comparisons of the gp13(-) mutants with the phi29 mature and emptied phage structures suggest the sequence of events that occur during the penetration of the tail through the peptidoglycan layer.


Assuntos
Bacillus subtilis/virologia , Bacteriófagos/enzimologia , Proteínas Virais/química , Bacteriófagos/patogenicidade , Parede Celular/metabolismo , Parede Celular/virologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Peptidoglicano/metabolismo , Conformação Proteica
16.
Proc Natl Acad Sci U S A ; 105(47): 18284-9, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19011098

RESUMO

When poliovirus (PV) recognizes its receptor, CD155, the virus changes from a 160S to a 135S particle before releasing its genome into the cytoplasm. CD155 is a transmembrane protein with 3 Ig-like extracellular domains, D1-D3, where D1 is recognized by the virus. The crystal structure of D1D2 has been determined to 3.5-A resolution and fitted into approximately 8.5-A resolution cryoelectron microscopy reconstructions of the virus-receptor complexes for the 3 PV serotypes. These structures show that, compared with human rhinoviruses, the virus-receptor interactions for PVs have a greater dependence on hydrophobic interactions, as might be required for a virus that can inhabit environments of different pH. The pocket factor was shown to remain in the virus during the first recognition stage. The present structures, when combined with earlier mutational investigations, show that in the subsequent entry stage the receptor moves further into the canyon when at a physiological temperature, thereby expelling the pocket factor and separating the viral subunits to form 135S particles. These results provide a detailed analysis of how a nonenveloped virus can enter its host cell.


Assuntos
Poliovirus/fisiologia , Receptores Virais/química , Sequência de Aminoácidos , Fusão Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Conformação Proteica , Receptores Virais/genética , Receptores Virais/fisiologia , Receptores Virais/ultraestrutura
17.
Enzymes ; 50: 369-413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34861943

RESUMO

Although the process of genome encapsidation is highly conserved in tailed bacteriophages and eukaryotic double-stranded DNA viruses, there are two distinct packaging pathways that these viruses use to catalyze ATP-driven translocation of the viral genome into a preassembled procapsid shell. One pathway is used by ϕ29-like phages and adenoviruses, which replicate and subsequently package a monomeric, unit-length genome covalently attached to a virus/phage-encoded protein at each 5'-end of the dsDNA genome. In a second, more ubiquitous packaging pathway characterized by phage lambda and the herpesviruses, the viral DNA is replicated as multigenome concatemers linked in a head-to-tail fashion. Genome packaging in these viruses thus requires excision of individual genomes from the concatemer that are then translocated into a preassembled procapsid. Hence, the ATPases that power packaging in these viruses also possess nuclease activities that cut the genome from the concatemer at the beginning and end of packaging. This review focuses on proposed mechanisms of genome packaging in the dsDNA viruses using unit-length ϕ29 and concatemeric λ genome packaging motors as representative model systems.


Assuntos
Empacotamento do DNA , Montagem de Vírus , Bacteriófago lambda/genética , DNA Viral , Empacotamento do Genoma Viral , Montagem de Vírus/genética
18.
Enzymes ; 49: 265-303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696835

RESUMO

Flaviviruses such as dengue, Japanese encephalitis, West Nile, Yellow Fever and Zika virus, cause viral hemorrhagic fever and encephalitis in humans. However, antiviral therapeutics to treat or prevent flavivirus infections are not yet available. Thus, there is pressing need to develop therapeutics and vaccines that target flavivirus infections. All flaviviruses carry a positive-sense single-stranded RNA genome, which encodes ten proteins; three structural proteins form the virus shell, and seven nonstructural (NS) proteins are involved in replication of the viral genome. While all NS proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) are part of a functional membrane-bound replication complex, enzymatic activities required for flaviviral replication reside in only two NS proteins, NS3 and NS5. NS3 functions as a protease, helicase, and triphosphatase, and NS5 as a capping enzyme, methyltransferase, and RNA-dependent RNA polymerase. In this chapter, we provide an overview of viral replication focusing on the structure and function of NS3 and NS5 replicases. We further describe strategies and examples of current efforts to identify potential flavivirus inhibitors against NS3 and NS5 enzymatic activities that can be developed as therapeutic agents to combat flavivirus infections.


Assuntos
Inibidores Enzimáticos/farmacologia , Flavivirus , Proteínas não Estruturais Virais , Flavivirus/enzimologia , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais/genética , Replicação Viral
19.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962953

RESUMO

Molecular segregation and biopolymer manipulation require the action of molecular motors to do work by applying directional forces to macromolecules. The additional strand conserved E (ASCE) ring motors are an ancient family of molecular motors responsible for diverse biological polymer manipulation tasks. Viruses use ASCE segregation motors to package their genomes into their protein capsids and provide accessible experimental systems due to their relative simplicity. We show by cryo-EM-focused image reconstruction that ASCE ATPases in viral double-stranded DNA (dsDNA) packaging motors adopt helical symmetry complementary to their dsDNA substrates. Together with previous data, our results suggest that these motors cycle between helical and planar configurations, providing a possible mechanism for directional translocation of DNA. Similar changes in quaternary structure have been observed for proteasome and helicase motors, suggesting an ancient and common mechanism of force generation that has been adapted for specific tasks over the course of evolution.


Assuntos
Empacotamento do DNA , Empacotamento do Genoma Viral , DNA Viral/química , Genoma Viral , Proteínas Virais/química , Montagem de Vírus
20.
Structure ; 16(8): 1267-74, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18682228

RESUMO

Cryo-electron microscopy (cryo-EM) studies of the bacteriophage phi29 DNA packaging motor have delineated the relative positions and molecular boundaries of the 12-fold symmetric head-tail connector, the 5-fold symmetric prohead RNA (pRNA), the ATPase that provides the energy for packaging, and the procapsid. Reconstructions, assuming 5-fold symmetry, were determined for proheads with 174-base, 120-base, and 71-base pRNA; proheads lacking pRNA; proheads with ATPase bound; and proheads in which the packaging motor was missing the connector. These structures are consistent with pRNA and ATPase forming a pentameric motor component around the unique vertex of proheads. They suggest an assembly pathway for the packaging motor and a mechanism for DNA translocation into empty proheads.


Assuntos
Fagos Bacilares/química , Empacotamento do DNA , Proteínas Motores Moleculares/química , Conformação Proteica , Proteínas Virais/química , Microscopia Crioeletrônica , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Conformação de Ácido Nucleico , Precursores de RNA/química , Precursores de RNA/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA