RESUMO
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
RESUMO
During their lifecycle, many marine organisms rely on natural adhesives to attach to wet surfaces for movement and self-defense in aqueous tidal environments. Adhesive proteins from mussels are biocompatible and elicit only minimal immune responses in humans. Therefore these proteins have received increased attention for their potential applications in medicine, biomaterials, and biotechnology. The Asian green mussel Perna viridis secretes several byssal plaque proteins, molecules that help anchoring the mussel to surfaces. Among these proteins, protein-5ß (Pvfp-5ß) initiates interactions with the substrate, displacing interfacial water molecules before binding to the surface. Here, we established the first recombinant expression in Escherichia coli of Pvfp-5ß. We characterized recombinant Pvfp-5ß, finding that despite displaying a CD spectrum consistent with features of a random coil, the protein is correctly folded as indicated by MS and NMR analyses. Pvfp-5ß folds as a ß-sheet-rich protein as expected for an epidermal growth factor-like module. We examined the effects of Pvfp-5ß on cell viability and adhesion capacity in NIH-3T3 and HeLa cell lines, revealing that Pvfp-5ß has no cytotoxic effects at the protein concentrations used and provides good cell-adhesion strength on both glass and plastic plates. Our findings suggest that the adhesive properties of recombinant Pvfp-5ß make it an efficient surface-coating material, potentially suitable for biomedical applications including regeneration of damaged tissues.
Assuntos
Proteínas/química , Adesivos Teciduais , Animais , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Perna (Organismo) , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Propriedades de Superfície , Engenharia TecidualRESUMO
BACKGROUND: Lysine demethylase enzymes (KDMs) are an emerging class of therapeutic targets, that catalyse the removal of methyl marks from histone lysine residues regulating chromatin structure and gene expression. KDM4A isoform plays an important role in the epigenetic dysregulation in various cancers and is linked to aggressive disease and poor clinical outcomes. Despite several efforts, the KDM4 family lacks successful specific molecular inhibitors. RESULTS: Herein, starting from a structure-based fragments virtual screening campaign we developed a synergic framework as a guide to rationally design efficient KDM4A inhibitors. Commercial libraries were used to create a fragments collection and perform a virtual screening campaign combining docking and pharmacophore approaches. The most promising compounds were tested in-vitro by a Homogeneous Time-Resolved Fluorescence-based assay developed for identifying selective substrate-competitive inhibitors by means of inhibition of H3K9me3 peptide demethylation. 2-(methylcarbamoyl)isonicotinic acid was identified as a preliminary active fragment, displaying inhibition of KDM4A enzymatic activity. Its chemical exploration was deeply investigated by computational and experimental approaches which allowed a rational fragment growing process. The in-silico studies guided the development of derivatives designed as expansion of the primary fragment hit and provided further knowledge on the structure-activity relationship. CONCLUSIONS: Our study describes useful insights into key ligand-KDM4A protein interaction and provides structural features for the development of successful selective KDM4A inhibitors.
Assuntos
Histona Desmetilases com o Domínio Jumonji , Lisina , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Metilação de DNA , Histonas/metabolismo , Relação Estrutura-AtividadeRESUMO
Some marine organisms can resist to aqueous tidal environments and adhere tightly on wet surface. This behavior has raised increasing attention for potential applications in medicine, biomaterials, and tissue engineering. In mussels, adhesive forces to the rock are the resultant of proteinic fibrous formations called byssus. We present the solution structure of Pvfp-5ß, one of the three byssal plaque proteins secreted by the Asian green mussel Perna viridis, and the component responsible for initiating interactions with the substrate. We demonstrate that Pvfp-5ß has a stably folded structure in agreement with the presence in the sequence of two EGF motifs. The structure is highly rigid except for a few residues affected by slow local motions in the µs-ms time scale, and differs from the model calculated by artificial intelligence methods for the relative orientation of the EGF modules, which is something where computational methods still underperform. We also show that Pvfp-5ß is able to coacervate even with no DOPA modification, giving thus insights both for understanding the adhesion mechanism of adhesive mussel proteins, and developing of biomaterials.
Assuntos
Inteligência Artificial , Perna (Organismo) , Adesivos/metabolismo , Animais , Materiais Biocompatíveis , Fator de Crescimento Epidérmico , Perna (Organismo)/química , Perna (Organismo)/genética , Perna (Organismo)/metabolismo , Engenharia TecidualRESUMO
Phosphorylation of the activation loop is a fundamental step in the activation of most protein kinases. In the case of the Src tyrosine kinase, a prototypical kinase due to its role in cancer and its historic importance, phosphorylation of tyrosine 416 in the activation loop is known to rigidify the structure and contribute to the switch from the inactive to a fully active form. However, whether or not phosphorylation is able per-se to induce a fully active conformation, that efficiently binds ATP and phosphorylates the substrate, is less clear. Here we employ a combination of solution NMR and enhanced-sampling molecular dynamics simulations to fully map the effects of phosphorylation and ATP/ADP cofactor loading on the conformational landscape of Src tyrosine kinase. We find that both phosphorylation and cofactor binding are needed to induce a fully active conformation. What is more, we find a complex interplay between the A-loop and the hinge motion where the phosphorylation of the activation-loop has a significant allosteric effect on the dynamics of the C-lobe.
Assuntos
Trifosfato de Adenosina/metabolismo , Quinases da Família src/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Termodinâmica , Tirosina/metabolismo , Quinases da Família src/químicaRESUMO
Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called "DFG-flip" of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an "in to out" movement resulting in a particular inactive conformation to which "type II" kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.