Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Development ; 142(11): 2026-36, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25953347

RESUMO

SCHIP1 is a cytoplasmic partner of cortical cytoskeleton ankyrins. The IQCJ-SCHIP1 isoform is a component of axon initial segments and nodes of Ranvier of mature axons in peripheral and central nervous systems, where it associates with membrane complexes comprising cell adhesion molecules. SCHIP1 is also expressed in the mouse developing central nervous system during embryonic stages of active axonogenesis. Here, we identify a new and early role for SCHIP1 during axon development and establishment of the anterior commissure (AC). The AC is composed of axons from the piriform cortex, the anterior olfactory nucleus and the amygdala. Schip1 mutant mice displayed early defects in AC development that might result from impaired axon growth and guidance. In addition, mutant mice presented a reduced thickness of the piriform cortex, which affected projection neurons in layers 2/3 and was likely to result from cell death rather than from impairment of neuron generation or migration. Piriform cortex neurons from E14.5 mutant embryos displayed axon initiation/outgrowth delay and guidance defects in vitro. The sensitivity of growth cones to semaphorin 3F and Eph receptor B2, two repulsive guidance cues crucial for AC development, was increased, providing a possible basis for certain fiber tract alterations. Thus, our results reveal new evidence for the involvement of cortical cytoskeleton-associated proteins in the regulation of axon development and their importance for the formation of neuronal circuits.


Assuntos
Comissura Anterior/embriologia , Comissura Anterior/metabolismo , Axônios/metabolismo , Proteínas de Transporte/metabolismo , Citoesqueleto/metabolismo , Córtex Piriforme/embriologia , Córtex Piriforme/metabolismo , Animais , Morte Celular , Embrião de Mamíferos/metabolismo , Cones de Crescimento/metabolismo , Camundongos , Camundongos Mutantes , Proteínas do Tecido Nervoso/metabolismo , Receptor EphB2/metabolismo
2.
Glia ; 63(4): 699-717, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25530205

RESUMO

Oligodendrocytes are the myelinating cells of the central nervous system. Multiple markers are available to analyze the populations of oligodendroglial cells and their precursors during development and in pathological conditions. However, the behavior of oligodendrocytes remains poorly characterized in vivo, especially at the level of individual cells. Studying this aspect has been impaired so far by the lack of suitable methods for visualizing single oligodendrocytes, their processes, and their interactions during myelination. Here, we have used multicolor labeling technology to single-out simultaneously many individual oligodendrocytes in the postnatal mouse optic nerve. This method is based on Brainbow, a transgenic system for stochastic expression of multiple fluorescent protein genes through Cre-lox recombination, previously used for visualizing axons and neurons. We used tamoxifen-inducible recombination in myelinating cells of Brainbow transgenic mice to obtain multicolor labeling of oligodendrocytes. We show that the palette of colors expressed by labeled oligodendrocytes is tamoxifen dependent, with the highest doses producing the densest and most colorful labeling. At low doses of tamoxifen, the morphology of single or small clusters of fluorescent oligodendrocytes can be studied during postnatal development and in adult. Internodes are labeled to their extremities, revealing nodes of Ranvier. The new mouse model presented here opens new possibilities to explore the organization and development of the oligodendrocyte network with single-cell resolution.


Assuntos
Proteínas Luminescentes/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Oligodendroglia/citologia , Nervo Óptico/citologia , Coloração e Rotulagem/métodos , Animais , Imunofluorescência/métodos , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Oligodendroglia/metabolismo , Recombinação Genética , Processos Estocásticos , Tamoxifeno/administração & dosagem , Transgenes
3.
Glia ; 60(10): 1590-604, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22777942

RESUMO

Myelination is regulated by extracellular proteins, which control interactions between oligodendrocytes and axons. Semaphorins are repulsive axon guidance molecules, which control the migration of oligodendrocyte precursors during normal development and possibly in demyelinating diseases. We show here that the transmembrane semaphorin 6A (Sema6A) is highly expressed by myelinating oligodendrocytes in the postnatal mouse brain. In adult mice, Sema6A expression is upregulated in demyelinating lesions in cuprizone-treated mice. The analysis of the optic nerve and anterior commissure of Sema6A-deficient mice revealed a marked delay of oligodendrocyte differentiation. Accordingly, the development of the nodes of Ranvier is also transiently delayed. We also observed an arrest in the in vitro differentiation of purified oligodendrocytes lacking Sema6A, with a reduction of the expression level of Myelin Basic Protein. Their morphology is also abnormal, with less complex and ramified processes than wild-type oligodendrocytes. In myelinating co-cultures of dorsal root ganglion neurons and purified oligodendrocytes we found that myelination is perturbed in absence of Sema6A. These results suggest that Sema6A might have a role in myelination by controlling oligodendrocyte differentiation.


Assuntos
Diferenciação Celular/fisiologia , Doenças Desmielinizantes/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Semaforinas/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/citologia , Bromodesoxiuridina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Gânglios Espinais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores da Monoaminoxidase/toxicidade , Mutação/fisiologia , Proteína Básica da Mielina/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/efeitos dos fármacos , Gravidez , RNA Mensageiro/metabolismo , Nós Neurofibrosos/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Superfície Celular/deficiência , Semaforinas/deficiência , Células-Tronco/fisiologia , Fatores de Tempo , Fatores de Transcrição/metabolismo
4.
J Neurosci ; 23(27): 9229-39, 2003 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-14534257

RESUMO

Semaphorins are a family of secreted and membrane-bound proteins, known to regulate axonal pathfinding. Sema4D, also called CD100, was first isolated in the immune system where it is involved in B and T cell activation. We found that in the mouse, Sema4D is expressed in cells throughout the CNS white matter, with a peak during the myelination period. Double-labeling experiments with different markers of oligodendrocyte lineage such as olig1, olig2, platelet-derived growth factor receptor alpha, and proteolipid protein showed that Sema4D was expressed selectively by oligodendrocytes and myelin. The presence of Sema4D in myelin was confirmed using Western blot. Sema4D expression in myelinating oligodendrocytes was further observed using neuron-oligodendrocyte cocultures. Moreover, using stripe assay, we found that Sema4D is strongly inhibitory for postnatal sensory and cerebellar granule cell axons. This prompted us to examine whether Sema4D expression is modified after CNS injury. At 8 d after spinal cord lesions, Sema4D expression was strongly upregulated in oligodendrocytes at the periphery of the lesion. Sema4D-positive cells were not colabeled with the astrocyte marker GFAP, with the microglial and macrophagic marker isolectin B4, or with NG2, a marker of oligodendrocyte precursors. This upregulation was transient because from 1 month after the lesion, Sema4D expression was back to its normal level. These results indicate that Sema4D is a novel inhibitory factor for axonal regeneration expressed in myelin.


Assuntos
Antígenos CD , Axônios/fisiologia , Sistema Nervoso Central/metabolismo , Glicoproteínas de Membrana/metabolismo , Oligodendroglia/metabolismo , Semaforinas , Traumatismos da Medula Espinal/metabolismo , Animais , Axônios/efeitos dos fármacos , Biomarcadores/análise , Células Cultivadas , Sistema Nervoso Central/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Oligodendroglia/patologia , RNA Mensageiro/metabolismo , Traumatismos da Medula Espinal/patologia , Regulação para Cima
5.
Neuroreport ; 13(17): 2309-12, 2002 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-12488817

RESUMO

The Drosophila linotte1 mutation was isolated from a genetic screen designed to identify learning and memory genes. For some authors, this mutation affects a novel gene specifically involved in adult learning and memory, whereas for others, it is an allele of the derailed receptor tyrosine kinase gene (the linotte/derailed gene) involved in nervous system development. Here, we show that the original derailed mutation induces a memory phenotype. We also report that a new null mutation, lioexc21, affecting specifically the linotte/derailed gene causes behavioral defects, which can be partially rescued by expression of a lio+/drl+ transgene. The data presented here suggest that the memory phenotype of linotte and derailed mutants is a consequence of abnormal brain development due to loss of function of the linotte/derailed encoded receptor tyrosine kinase.


Assuntos
Encéfalo/anormalidades , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Transtornos da Memória/genética , Memória/fisiologia , Malformações do Sistema Nervoso/genética , Receptores Proteína Tirosina Quinases/deficiência , Sequência de Aminoácidos/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Encéfalo/fisiopatologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Mutação/genética , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/fisiopatologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/genética , Olfato/genética , Transcrição Gênica/genética
6.
Brain Res Brain Res Rev ; 49(2): 295-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16111557

RESUMO

Myelin inhibition is considered a constitutive, static, repulsive barrier not reactive to a central nervous system (CNS) lesion. However, recent evidence underlines the existence of considerable add-on axon growth inhibition upon CNS injury. This postlesional, reactive myelin/oligodendrocyte-derived inhibition will require the development of novel screening approaches and therapeutic reagents to promote axonal regeneration.


Assuntos
Axônios/fisiologia , Doenças do Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/fisiopatologia , Proteínas da Mielina/metabolismo , Oligodendroglia/metabolismo , Animais , Regulação da Expressão Gênica , Modelos Neurológicos , Glicoproteína Associada a Mielina , Regeneração Nervosa , Transdução de Sinais
7.
Dev Genes Evol ; 215(3): 158-63, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15611849

RESUMO

The RYK subfamily of receptor tyrosine kinases is characterised by unusual, but highly conserved, amino acid substitutions in the kinase domain. The linotte/derailed gene encodes a Drosophila RYK subfamily member involved in embryonic and adult central nervous system development. Previous studies have shown that the kinase activity of this receptor is not required in vivo for its embryonic function. In this study, we have investigated the role of the cytoplasmic domain and the kinase activity of the linotte/derailed receptor tyrosine kinase in adult brain development. Our results indicate that these domains are not essential for adult brain development but they are required for the proper regulation of the activity of this receptor. This sheds light on a regulatory role for the kinase activity of a RYK subfamily member.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Receptores Proteína Tirosina Quinases/genética , Animais , Sequência de Bases , Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Primers do DNA , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Mutagênese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA