Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(2): 871-882, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280751

RESUMO

Molecular and functional abnormalities of astrocytes have been implicated in the etiology and pathogenesis of schizophrenia (SCZ). In this study, we examined the proteome, inflammatory responses, and secretome effects on vascularization of human induced pluripotent stem cell (hiPSC)-derived astrocytes from patients with SCZ. Proteomic analysis revealed alterations in proteins related to immune function and vascularization. Reduced expression of the nuclear factor kappa B (NF-κB) p65 subunit was observed in these astrocytes, with no incremental secretion of cytokines after tumor necrosis factor alpha (TNF-α) stimulation. Among inflammatory cytokines, secretion of interleukin (IL)-8 was particularly elevated in SCZ-patient-derived-astrocyte-conditioned medium (ASCZCM). In a chicken chorioallantoic membrane (CAM) assay, ASCZCM reduced the diameter of newly grown vessels. This effect could be mimicked with exogenous addition of IL-8. Taken together, our results suggest that SCZ astrocytes are immunologically dysfunctional and may consequently affect vascularization through secreted factors.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Astrócitos/metabolismo , Proteômica , Esquizofrenia/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fenótipo
2.
Immun Ageing ; 21(1): 17, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454515

RESUMO

BACKGROUND: Several risk factors have been involved in the poor clinical progression of coronavirus disease-19 (COVID-19), including ageing, and obesity. SARS-CoV-2 may compromise lung function through cell damage and paracrine inflammation; and obesity has been associated with premature immunosenescence, microbial translocation, and dysfunctional innate immune responses leading to poor immune response against a range of viruses and bacterial infections. Here, we have comprehensively characterized the immunosenescence, microbial translocation, and immune dysregulation established in hospitalized COVID-19 patients with different degrees of body weight. RESULTS: Hospitalised COVID-19 patients with overweight and obesity had similarly higher plasma LPS and sCD14 levels than controls (all p < 0.01). Patients with obesity had higher leptin levels than controls. Obesity and overweight patients had similarly higher expansions of classical monocytes and immature natural killer (NK) cells (CD56+CD16-) than controls. In contrast, reduced proportions of intermediate monocytes, mature NK cells (CD56+CD16+), and NKT were found in both groups of patients than controls. As expected, COVID-19 patients had a robust expansion of plasmablasts, contrasting to lower proportions of major T-cell subsets (CD4 + and CD8+) than controls. Concerning T-cell activation, overweight and obese patients had lower proportions of CD4+CD38+ cells than controls. Contrasting changes were reported in CD25+CD127low/neg regulatory T cells, with increased and decreased proportions found in CD4+ and CD8+ T cells, respectively. There were similar proportions of T cells expressing checkpoint inhibitors across all groups. We also investigated distinct stages of T-cell differentiation (early, intermediate, and late-differentiated - TEMRA). The intermediate-differentiated CD4 + T cells and TEMRA cells (CD4+ and CD8+) were expanded in patients compared to controls. Senescent T cells can also express NK receptors (NKG2A/D), and patients had a robust expansion of CD8+CD57+NKG2A+ cells than controls. Unbiased immune profiling further confirmed the expansions of senescent T cells in COVID-19. CONCLUSIONS: These findings suggest that dysregulated immune cells, microbial translocation, and T-cell senescence may partially explain the increased vulnerability to COVID-19 in subjects with excess of body weight.

3.
J Neurochem ; 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661637

RESUMO

The receptor for advanced glycation end products (RAGE) is a protein of the immunoglobulin superfamily capable of regulating inflammation. Considering the role of this receptor in the initiation and establishment of neuroinflammation, and the limited understanding of the function of RAGE in the maintenance of this condition, this study describes the effects of RAGE inhibition in the brain, through an intranasal treatment with the antagonist FPS-ZM1, in an animal model of chronic neuroinflammation induced by acute intraperitoneal injection of lipopolysaccharide (LPS). Seventy days after LPS administration (2 mg/kg, i.p.), Wistar rats received, intranasally, 1.2 mg of FPS-ZM1 over 14 days. On days 88 and 89, the animals were submitted to the open-field test and were killed on day 90 after the intraperitoneal injection of LPS. Our results indicate that blockade of encephalic RAGE attenuates LPS-induced chronic neuroinflammation in different brain regions. Furthermore, we found that intranasal FPS-ZM1 administration reduced levels of gliosis markers, RAGE ligands, and α-synuclein in the substantia nigra pars compacta. Additionally, the treatment also reversed the increase in S100 calcium-binding protein B (RAGE ligand) in the cerebrospinal fluid and the cognitive-behavioral deficits promoted by LPS-less time spent in the central zone of the open-field arena (more time in the lateral zones), decreased total distance traveled, and increased number of freezing episodes. In summary, our study demonstrates the prominent role of RAGE in the maintenance of a chronic neuroinflammatory state triggered by a single episode of systemic inflammation and also points to possible future RAGE-based therapeutic approaches to treat conditions in which chronic neuroinflammation and increased α-synuclein levels could play a relevant role, such as in Parkinson's disease.

4.
J Neurochem ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37984072

RESUMO

Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.

5.
J Neurochem ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37381043

RESUMO

The receptor for advanced glycation end products (RAGE) is a transmembrane receptor that belongs to the immunoglobulin superfamily and is extensively associated with chronic inflammation in non-transmissible diseases. As chronic inflammation is consistently present in neurodegenerative diseases, it was largely assumed that RAGE could act as a critical modulator of neuroinflammation in Parkinson's disease (PD), similar to what was reported for Alzheimer's disease (AD), where RAGE is postulated to mediate pro-inflammatory signaling in microglia by binding to amyloid-ß peptide. However, accumulating evidence from studies of RAGE in PD models suggests a less obvious scenario. Here, we review physiological aspects of RAGE and address the current questions about the potential involvement of this receptor in the cellular events that may be critical for the development and progression of PD, exploring possible mechanisms beyond the classical view of the microglial activation/neuroinflammation/neurodegeneration axis that is widely assumed to be the general mechanism of RAGE action in the adult brain.

6.
Immunol Invest ; 52(7): 796-814, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37665564

RESUMO

Inflammatory bowel diseases (IBD) cause increased inflammatory signalling and oxidative damage. IBDs are correlated with an increased incidence of brain-related disorders suggesting that the gut-brain-axis exerts a pivotal role in IBD. Butyrate is one of the main microbial metabolites in the colon, and it can cross the blood-brain barrier, directly affecting the brain. We induced ulcerative colitis (UC) in mice utilizing dextran sodium sulfate (DSS) in the drinking water for 7 days. Animals were divided into four groups, receiving water or DSS and treated with saline or 0,066 g/kg of Sodium Butyrate for 7 days. We also used an integrative approach, combining bioinformatics functional network and experimental strategies to understand how butyrate may affect UC. Butyrate was able to attenuate colitis severity and intestinal inflammation. Butyrate protected the colon against oxidative damage in UC and protected the prefrontal cortex from neuroinflammation observed in DSS group. Immunocontent of tight junction proteins Claudin-5 and Occludin were reduced in colon of DSS group mice and butyrate was able to restore to control levels. Occludin and Claudin-5 decrease in DSS group indicate that an intestinal barrier disruption may lead to the increased influx of gut-derived molecules, causing neuroinflammation in the prefrontal cortex, observed by increased IBA-1 marker. The probable protection mechanism of butyrate treatment occurs through NRF2 through Nrf2 and HIF-1α activation and consequent activation of catalase and superoxide dismutase. Our data suggest that systemic inflammation associated with intestinal barrier disruption in UC leads to neuroinflammation in the prefrontal cortex, which was atenuated by butyrate.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Animais , Camundongos , Ácido Butírico/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Doenças Neuroinflamatórias , Claudina-5 , Fator 2 Relacionado a NF-E2 , Ocludina , Córtex Pré-Frontal , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
7.
Thromb J ; 21(1): 80, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507773

RESUMO

BACKGROUND: Because severe acute respiratory syndrome coronarivus 2 (SARS-CoV-2) leads to severe conditions and thrombus formation, evaluation of the coagulation markers is important in determining the prognosis and phenotyping of patients with COVID-19. METHODS: In a prospective study that included 213 COVID-19 patients admitted to the intensive care unit (ICU) the levels of antithrombin, C-reactive protein (CRP); factors XI, XII, XIII; prothrombin and D-dimer were measured. Spearman's correlation coefficient was used to assess the pairwise correlations between the biomarkers. Hierarchical and non-hierarchical cluster analysis was performed using the levels of biomarkers to identify patients´ phenotypes. Multivariate binary regression was used to determine the association of the patient´s outcome with clinical variables and biomarker levels. RESULTS: The levels of factors XI and XIII were significantly higher in patients with less severe COVID-19, while factor XIII and antithrombin levels were significantly associated with mortality. These coagulation biomarkers were associated with the in-hospital survival of COVID-19 patients over and above the core clinical factors on admission. Hierarchical cluster analysis showed a cluster between factor XIII and antithrombin, and this hierarchical cluster was extended to CRP in the next step. Furthermore, a non-hierarchical K-means cluster analysis was performed, and two phenotypes were identified based on the CRP and antithrombin levels independently of clinical variables and were associated with mortality. CONCLUSION: Coagulation biomarkers were associated with in-hospital survival of COVID-19 patients. Lower levels of factors XI, XII and XIII and prothrombin were associated with disease severity, while higher levels of both CRP and antithrombin clustered with worse prognosis. These results suggest the role of coagulation abnormalities in the development of COVID-19 and open the perspective of identifying subgroups of patients who would benefit more from interventions focused on regulating coagulation.

8.
Neurochem Res ; 47(2): 409-421, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34557995

RESUMO

Neuroblastoma is the most common extracranial solid tumour in childhood, originated from cells of the neural crest during the development of the Sympathetic Nervous System. Retinoids are vitamin-A derived differentiating agents utilised to avoid disease resurgence in high-risk neuroblastoma treatment. Several studies indicate that hypoxia-a common feature of the tumoural environment-is a key player in cell differentiation and proliferation. Hypoxia leads to the accumulation of the hypoxia-inducible factor-1α (HIF-1α). This work aims to investigate the effects of the selective inhibition of HIF-1α on the differentiation induced by retinoic acid in human neuroblastoma cells from the SH-SY5Y lineage to clarify its role in cell differentiation. Our results indicate that HIF-1α inhibition impairs RA-induced differentiation by reducing neuron-like phenotype and diminished immunolabeling and expression of differentiation markers. HIF1A is involved in Retinoic Acid (RA) induced differentiation in SH-SY5Y neuroblastoma cells. siRNA HIF1A gene silencing leads to a weaker response to RA, demonstrated by changes in the neuro-like phenotype and diminished expression of differentiation markers.


Assuntos
Neuroblastoma , Tretinoína , Diferenciação Celular , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neuritos , Neuroblastoma/metabolismo , Tretinoína/farmacologia
9.
Br J Nutr ; 128(5): 964-974, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34605386

RESUMO

Obesity is a major public health problem that predisposes to several diseases and higher mortality in patients with COVID-19. Obesity also generates neuroinflammation, which predisposes to the development of neuropsychiatric diseases. Since there is a lack of effective treatments for obesity, the search for new strategies to reverse its consequences is urgent. In this perspective, the anti-inflammatory properties of omega-3 polyunsaturated fatty acids such as DHA/EPA might reduce the harmful effects of obesity. Here, we used the cafeteria diet (CAF) model to induce obesity in Wistar rats. Animals received ultra-processed food for 20 weeks, and DHA/EPA supplementation (500 mg/kg per d) was performed between the 16th and the 20th week. At the end of the experiment, it was evaluated: body weight, visceral fat deposition, plasma glucose, insulin and triglycerides, and it was also measured the levels of inflammatory cytokines TNF-α and IL-6 in plasma and liver, and TNF-α in the prefrontal cortex. The elevated plus maze test was performed to analyse anxiety-like behaviour. Our results demonstrated that DHA/EPA could not reverse weight and fat gain and did not modify plasma dosages. However, there was a decrease in IL-6 in the liver (DHA/EPA effect: P = 0.023) and TNF-α in the brain (CAF compared with CAF + DHA/EPA, P < 0.05). Also, there was a decrease in the anxiety index in CAF + DHA/EPA compared with the CAF group (P < 0.01). Thus, DHA/EPA supplementation is helpful to reverse the consequences of obesity in the brain.


Assuntos
COVID-19 , Ácidos Graxos Ômega-3 , Ratos , Masculino , Animais , Ácido Eicosapentaenoico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Ácidos Docosa-Hexaenoicos , Ratos Wistar , Obesidade/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Suplementos Nutricionais , Metaboloma , Ansiedade
10.
Nutr Neurosci ; 25(5): 1026-1040, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33078695

RESUMO

Obesity is a health problem that has been associated with neuroinflammation, decreased cognitive functions and development of neurodegenerative diseases. Parkinson's disease (PD) is a chronic neurodegenerative condition characterized by motor and non-motor abnormalities, increased brain inflammation, α-synuclein protein aggregation and dopaminergic neuron loss that is associated with decreased levels of tyrosine hydroxylase (TH) in the brain. Diet-induced obesity is a global epidemic and its role as a risk factor for PD is not clear. Herein, we showed that 25 weeks on a high-fat diet (HFD) promotes significant alterations in the nigrostriatal axis of Wistar rats. Obesity induced by HFD exposure caused a reduction in TH levels and increased TH phosphorylation at serine 40 in the ventral tegmental area. These effects were associated with insulin resistance, increased tumor necrosis factor-α levels, oxidative stress, astrogliosis and microglia activation. No difference was detected in the levels of α-synuclein. Obesity also induced impairment of locomotor activity, total mobility and anxiety-related behaviors that were identified in the open-field and light/dark tasks. There were no changes in motor coordination or memory. Together, these data suggest that the reduction of TH levels in the nigrostriatal axis occurs through an α-synuclein-independent pathway and can be attributed to brain inflammation, oxidative/nitrosative stress and metabolic disorders induced by obesity.


Assuntos
Encefalite , Doença de Parkinson , Animais , Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Encefalite/metabolismo , Doenças Neuroinflamatórias , Obesidade/etiologia , Obesidade/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
11.
J Cell Mol Med ; 24(1): 88-97, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654493

RESUMO

We aim to characterize the kinetics of early and late microglial phenotypes after systemic inflammation in an animal model of severe sepsis and the effects of minocycline on these phenotypes. Rats were subjected to CLP, and some animals were treated with minocycline (10 ug/kg) by i.c.v. administration. Animals were killed 24 hours, 5, 10 and 30 days after sepsis induction, and serum and hippocampus were collected for subsequent analyses. Real-time PCR was performed for M1 and M2 markers. TNF-α, IL-1ß, IL-6, IL-10, CCL-22 and nitrite/nitrate levels were measured. Immunofluorescence for IBA-1, CD11b and arginase was also performed. We demonstrated that early after sepsis, there was a preponderant up-regulation of M1 markers, and this was not switched to M2 phenotype markers later on. We found that up-regulation of both M1 and M2 markers co-existed up to 30 days after sepsis induction. In addition, minocycline induced a down-regulation, predominantly, of M1 markers. Our results suggest early activation of M1 microglia that is followed by an overlap of both M1 and M2 phenotypes and that the beneficial effects of minocycline on sepsis-associated brain dysfunction may be related to its effects predominantly on the M1 phenotype.


Assuntos
Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo/patologia , Inflamação/patologia , Microglia/patologia , Sepse/patologia , Animais , Hipocampo/metabolismo , Inflamação/metabolismo , Masculino , Microglia/metabolismo , Fenótipo , Ratos , Ratos Wistar , Sepse/metabolismo
12.
Glia ; 68(7): 1396-1409, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32003513

RESUMO

Astrogliosis comprises a variety of changes in astrocytes that occur in a context-specific manner, triggered by temporally diverse signaling events that vary with the nature and severity of brain insults. However, most mechanisms underlying astrogliosis were described using animals, which fail to reproduce some aspects of human astroglial signaling. Here, we report an in vitro model to study astrogliosis using human-induced pluripotent stem cells (iPSC)-derived astrocytes which replicate temporally intertwined aspects of reactive astrocytes in vivo. We analyzed the time course of astrogliosis by measuring nuclear translocation of NF-kB, production of cytokines, changes in morphology and function of iPSC-derived astrocytes exposed to TNF-α. We observed NF-kB p65 subunit nuclear translocation and increased gene expression of IL-1ß, IL-6, and TNF-α in the first hours following TNF-α stimulation. After 24 hr, conditioned media from iPSC-derived astrocytes exposed to TNF-α exhibited increased secretion of inflammation-related cytokines. After 5 days, TNF-α-stimulated cells presented a typical phenotype of astrogliosis such as increased immunolabeling of Vimentin and GFAP and nuclei with elongated shape and shrinkage. Moreover, ~50% decrease in aspartate uptake was observed during the time course of astrogliosis with no evident cell damage, suggesting astroglial dysfunction. Together, our results indicate that human iPSC-derived astrocytes reproduce canonical events associated with astrogliosis in a time dependent fashion. The approach described here may contribute to a better understanding of mechanisms governing human astrogliosis with potential applicability as a platform to uncover novel biomarkers and drug targets to prevent or mitigate astrogliosis associated with human brain disorders.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encefalopatias/metabolismo , Citocinas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Filamentos Intermediários/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vimentina/metabolismo
13.
Photochem Photobiol Sci ; 19(10): 1460-1469, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33026028

RESUMO

The overexposure of the skin to ultraviolet (UV) radiation may lead to oxidative stress, resulting in severe damage. The prevention of skin injuries through the topical application of natural compounds rich in antioxidants, such as propolis extracts, has shown promising results. In Brazil, the "red propolis" extract has stood out due to its complex constitution, based mainly on polyprenylated benzophenones (BZP). However, although the use of red propolis extracts has been shown to be encouraging, their addition in topical formulations is limited by the low solubility of BZP. For this reason, this study aimed to develop topical nanoemulgels containing Brazilian red propolis (BRP) extract to increase the potential of topical application, and the evaluation of skin protection against UVA/UVB radiation damage by means of protein carbonylation, protein thiol content and TBARS assays. The nanoemulgels were obtained by adding gelling polymer to nanoemulsions that were previously prepared by spontaneous emulsification. In this sense, a nanoemulgel containing BRP extract-loaded nanoemulsions (H-NE) and a nanoemulgel containing BRP extract-loaded nanoemulsions with DOTAP (H-NE/DT) were prepared. The physicochemical characterization of nanoemulgels showed monodisperse populations of 200-300 nm. The H-NE zeta potential was -38 mV, while that of H-NE/DT was +36 mV. BZP content in the formulations was around 0.86 mg g-1. These parameters remained stable for 90 days under cold storage. H/NE and H-NE/DT presented a non-Newtonian pseudoplastic rheological behavior. Permeation/retention studies, through porcine ear skin, showed the highest BZP retention (18.11 µg cm-2 after 8 h) for H-NE/DT, which also demonstrated, in an in vitro study, the highest ability to protect skin against oxidative damage after UVA/UVB radiation exposure. The results concerning the antioxidant activity revealed that formulations containing the BRP n-hexane extract were the most promising in combating oxidative stress, probable due to the presence of polyprenylated BZP. Altogether, the outcomes of this study suggest that nanoemulgels have suitable characteristics for topical application, and may be an alternative for the prevention of oxidative skin damage caused by UVA/UVB radiation.


Assuntos
Antioxidantes/farmacologia , Benzofenonas/farmacologia , Nanopartículas/química , Própole/farmacologia , Substâncias Protetoras/farmacologia , Pele/efeitos dos fármacos , Animais , Antioxidantes/química , Benzofenonas/química , Brasil , Orelha , Géis/química , Géis/farmacologia , Conformação Molecular , Tamanho da Partícula , Própole/química , Substâncias Protetoras/química , Propriedades de Superfície , Suínos , Raios Ultravioleta
14.
Br J Nutr ; 123(10): 1117-1126, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32077406

RESUMO

The study of polyphenols' effects on health has been gaining attention lately. In addition to reacting with important enzymes, altering the cell metabolism, these substances can present either positive or negative metabolic alterations depending on their consumption levels. Naringenin, a citrus flavonoid, already presents diverse metabolic effects. The objective of this work was to evaluate the effect of maternal naringenin supplementation during pregnancy on the tricarboxylic acid cycle activity in offspring's cerebellum. Adult female Wistar rats were divided into two groups: (1) vehicle (1 ml/kg by oral administration (p.o.)) or (2) naringenin (50 mg/kg p.o.). The offspring were euthanised at 7th day of life, and the cerebellum was dissected to analyse citrate synthase, isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH) and malate dehydrogenase (MDH) activities. Molecular docking used SwissDock web server and FORECASTER Suite, and the proposed binding pose image was created on UCSF Chimera. Data were analysed by Student's t test. Naringenin supplementation during pregnancy significantly inhibited IDH, α-KGDH and MDH activities in offspring's cerebellum. A similar reduction was observed in vitro, using purified α-KGDH and MDH, subjected to pre-incubation with naringenin. Docking simulations demonstrated that naringenin possibly interacts with dehydrogenases in the substrate and cofactor binding sites, inhibiting their function. Naringenin administration during pregnancy may affect cerebellar development and must be evaluated with caution by pregnant women and their physicians.


Assuntos
Cerebelo/enzimologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Suplementos Nutricionais , Flavanonas/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna , Animais , Citrato (si)-Sintase/efeitos dos fármacos , Feminino , Isocitrato Desidrogenase/efeitos dos fármacos , Complexo Cetoglutarato Desidrogenase/efeitos dos fármacos , Malato Desidrogenase/efeitos dos fármacos , Simulação de Acoplamento Molecular , Gravidez , Ratos , Ratos Wistar
15.
J Cell Biochem ; 120(12): 19730-19737, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31297896

RESUMO

Tyrosine hydroxylase (TH) is the key enzyme that controls the rate of synthesis of the catecholamines. SH-SY5Y cells with stable transfections of either human tyrosine hydroxylase isoform 1 (hTH1) or human tyrosine hydroxylase isoform 4 (hTH4) were used to determined the subcellular distribution of TH protein and phosphorylated TH, under basal conditions and after muscarine stimulation. Muscarine was previously shown to increase the phosphorylation of only serine 19 and serine 40 in hTH1 cells. Under basal conditions, the hTH1 and hTH4 proteins, their serine 19 phosphorylated forms and hTH1 phosphorylated at serine 40 were all similarly distributed; with ~80% in the cytosolic fraction, ~20% in the membrane fraction, and less than 1%, or not detectable, in the nuclear fraction. However, hTH4 phosphorylated at serine 71 had a significantly different distribution with ~65% cytosolic and ~35% membrane associated. Muscarine stimulation led to hTH1 being redistributed from the cytosol and nuclear fractions to the membrane fraction and hTH4 being redistributed from the cytosol to the nuclear fraction. These muscarine stimulated redistributions were not due to TH phosphorylation at serine 19, serine 40, or serine 71 and were most likely due to TH binding to proteins whose phosphorylation was increased by muscarine. This is the first study to show a difference in subcellular distribution between two human TH isoforms under basal and stimulated conditions.


Assuntos
Tirosina 3-Mono-Oxigenase/metabolismo , Linhagem Celular , Membrana Celular/enzimologia , Citosol/metabolismo , Humanos , Isoenzimas/metabolismo , Muscarina/farmacologia , Fosforilação , Serina/metabolismo , Frações Subcelulares/enzimologia , Tirosina 3-Mono-Oxigenase/genética
16.
Brain Behav Immun ; 80: 879-888, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176000

RESUMO

Sepsis is characterized by a severe and disseminated inflammation. In the central nervous system, sepsis promotes synaptic dysfunction and permanent cognitive impairment. Besides sepsis-induced neuronal dysfunction, glial cell response has been gaining considerable attention with microglial activation as a key player. By contrast, astrocytes' role during acute sepsis is still underexplored. Astrocytes are specialized immunocompetent cells involved in brain surveillance. In this context, the potential communication between the peripheral immune system and astrocytes during acute sepsis still remains unclear. We hypothesized that peripheral blood mononuclear cell (PBMC) mediators are able to affect the brain during an episode of acute sepsis. With this in mind, we first performed a data-driven transcriptome analysis of blood from septic patients to identify common features among independent clinical studies. Our findings evidenced pronounced impairment in energy-related signaling pathways in the blood of septic patients. Since astrocytes are key for brain energy homeostasis, we decided to investigate the communication between PBMC mediators and astrocytes in a rat model of acute sepsis, induced by cecal ligation and perforation (CLP). In the CLP animals, we identified widespread in vivo brain glucose hypometabolism. Ex vivo analyses demonstrated astrocyte reactivity along with reduced glutamate uptake capacity during sepsis. Also, by exposing cultured astrocytes to mediators released by PBMCs from CLP animals, we reproduced the energetic failure observed in vivo. Finally, by pharmacologically inhibiting phosphoinositide 3-kinase (PI3K), a central metabolic pathway downregulated in the blood of septic patients and reduced in the CLP rat brain, we mimicked the PBMC mediators effect on glutamate uptake but not on glucose metabolism. These results suggest that PBMC mediators are capable of directly mediating astrocyte reactivity and contribute to the brain energetic failure observed in acute sepsis. Moreover, the evidence of PI3K participation in this process indicates a potential target for therapeutic modulation.


Assuntos
Astrócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Sepse/fisiopatologia , Adulto , Animais , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/fisiologia , Masculino , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Wistar , Sepse/genética , Transdução de Sinais/fisiologia
17.
Mol Cell Biochem ; 462(1-2): 11-23, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31446616

RESUMO

BRCA-1 is a nuclear protein involved in DNA repair, transcriptional regulation, and cell cycle control. Its involvement in other cellular processes has been described. Here, we aimed to investigate the role of BRCA-1 in macrophages M(LPS), M(IL-4), and tumor cell-induced differentiation. We used siRNAs to knockdown BRCA-1 in RAW 264.7 macrophages exposed to LPS, IL-4, and C6 glioma cells conditioned medium (CMC6), and evaluated macrophage differentiation markers and functional phagocytic activity as well as DNA damage and cell survival in the presence and absence of BRCA-1. LPS and CMC6, but not by IL-4, increased DNA damage in macrophages, and this effect was more pronounced in BRCA-1-depleted cells, including M(IL-4). BRCA-1 depletion impaired expression of pro-inflammatory cytokines, TNF-α and IL-6, and reduced the phagocytic activity of macrophages in response to LPS. In CMC6-induced differentiation, BRCA-1 knockdown inhibited TNF-α and IL-6 expression which was accompanied by upregulation of the anti-inflammatory markers IL-10 and TGF-ß and reduced phagocytosis. In contrast, M(IL-4) phenotype was not affected by BRCA-1 status. Molecular docking predicted that the conserved BRCA-1 domain BRCT can interact with the p65 subunit of NF-κB. Immunofluorescence assays showed that BRCA-1 and p65 co-localize in the nucleus of LPS-treated macrophages and reporter gene assay showed that depletion of BRCA-1 decreased LPS and CMC6-induced NF-κB transactivation. IL-4 had no effect upon NF-κB. Taken together, our findings suggest a role of BRCA-1 in macrophage differentiation and phagocytosis induced by LPS and tumor cells secretoma, but not IL-4, in a mechanism associated with inhibition of NF-κB.


Assuntos
Proteína BRCA1/metabolismo , Polaridade Celular , Inflamação/patologia , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/patologia , NF-kappa B/metabolismo , Animais , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Polaridade Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Dano ao DNA , Inflamação/metabolismo , Lipopolissacarídeos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Camundongos , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , RNA Interferente Pequeno/metabolismo , Ratos
18.
Phytother Res ; 33(5): 1394-1403, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30868680

RESUMO

Obesity is a metabolic disorder associated with adverse health consequences that has increased worldwide at an epidemic rate. This has encouraged many people to utilize nonprescription herbal supplements for weight loss without knowledge of their safety or efficacy. However, mounting evidence has shown that some herbal supplements used for weight loss are associated with adverse effects. Guarana seed powder is a popular nonprescription dietary herb supplement marketed for weight loss, but no study has demonstrated its efficacy or safety when administered alone. Wistar rats were fed four different diets (low-fat diet and Western diet with or without guarana supplementation) for 18 weeks. Metabolic parameters, gut microbiota changes, and toxicity were then characterized. Guarana seed powder supplementation prevented weight gain, insulin resistance, and adipokine dysregulation induced by Western diet compared with the control diet. Guarana induced brown adipose tissue expansion, mitochondrial biogenesis, uncoupling protein-1 overexpression, AMPK activation, and minor changes in gut microbiota. Molecular docking suggested a direct activation of AMPK by four guarana compounds tested here. We propose that brown adipose tissue activation is one of the action mechanisms involved in guarana supplementation-induced weight loss and that direct AMPK activation may underlie this mechanism. In summary, guarana is an attractive potential therapeutic agent to treat obesity.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Resistência à Insulina , Paullinia/química , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental , Suplementos Nutricionais , Humanos , Masculino , Simulação de Acoplamento Molecular , Obesidade/metabolismo , Ratos , Ratos Wistar , Aumento de Peso , Redução de Peso/efeitos dos fármacos
19.
Arch Toxicol ; 92(1): 513-527, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28821999

RESUMO

In this study, we assessed some hippocampal signaling cascades and behavioral impairments in 30-day-old rat pups prenatally exposed to methylmercury (MeHg). Pregnant rats were exposed to 1.0 or 2.0 mg/kg MeHg by gavage in alternated days from gestational day 5 until parturition. We found increased anxiety-like and decreased exploration behavior evaluated by open field test and deficit of both short- and long-term memories by novel object recognition task, respectively, in MeHg-treated pups. Downregulated PI3K/Akt/mTOR pathway and activated/hypophosphorylated (Ser9) GSK3ß in MeHg-treated pups could be upstream of hyperphosphorylated Tau (Ser396) destabilizing microtubules and contributing to neural dysfunction in the hippocampus of these rats. Hyperphosphorylated/activated p38MAPK and downregulated phosphoErk1/2 support a role for mitogen-activated protein kinase (MAPK) cascade on MeHg neurotoxicity. Decreased receptor of advanced glycation end products (RAGE) immunocontent supports the assumption that downregulated RAGE/Erk1/2 pathway could be involved in hypophosphorylated lysine/serine/proline (KSP) repeats on neurofilament subunits and disturbed axonal transport. Downregulated myelin basic protein (MBP), the major myelin protein, is compatible with dysmyelination and neurofilament hypophosphorylation. Increased glial fibrillary acidic protein (GFAP) levels suggest reactive astrocytes, and active apoptotic pathways BAD/BCL-2, BAX/BCL-XL, and caspase 3 suggest cell death. Taken together, our findings get light on important signaling mechanisms that could underlie the behavioral deficits in 30-day-old pups prenatally exposed to MeHg.


Assuntos
Hipocampo/crescimento & desenvolvimento , Compostos de Metilmercúrio/toxicidade , Síndromes Neurotóxicas/etiologia , Efeitos Tardios da Exposição Pré-Natal , Transdução de Sinais/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar
20.
Ecotoxicol Environ Saf ; 162: 603-615, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30031321

RESUMO

Ubiquitous low-dose methylmercury (MeHg) exposure through an increased fish consumption represents a global public health problem, especially among pregnant women. A plethora of micronutrients presented in fish affects MeHg uptake/distribution, but limited data is available. Vitamin A (VitA), another fish micronutrient is used in nutritional supplementation, especially during pregnancy. However, there is no information about the health effects arising from their combined exposure. Therefore, the present study aimed to examine the effects of both MeHg and retinyl palmitate administered on pregnant and lactating rats in metabolic and redox parameters from dams and their offspring. Thirty Wistar female rats were orally supplemented with MeHg (0,5 mg/kg/day) and retinyl palmitate (7500 µg RAE/kg/day) via gavage, either individually or in combination from the gestational day 0 to weaning. For dams (150 days old) and their offspring (31 days old), glycogen accumulation (hepatic and cardiac) and retinoid contents (plasma and liver) were analyzed. Hg deposition in liver tissue was quantified. Redox parameters (liver, kidney, and heart) were evaluated for both animals. Cytogenetic damage was analyzed with micronucleus test. Our results showed no general toxic or metabolic alterations in dams and their offspring by MeHg-VitA co-administration during pregnancy and lactation. However, increased lipoperoxidation in maternal liver and a disrupted pro-oxidant response in the heart of male pups was encountered, with apparently no particular effects in the antioxidant response in female offspring. GST activity in dam kidney was altered leading to possible redox disruption of this tissue with no alterations in offspring. Finally, the genomic damage was exacerbated in both male and female pups. In conclusion, low-dose MeHg exposure and retinyl palmitate supplementation during gestation and lactation produced a potentiated pro-oxidant effect, which was tissue-specific. Although this is a pre-clinical approach, we recommend precaution for pregnant women regarding food consumption, and we encourage more epidemiological studies to assess possible modulations effects of MeHg-VitA co-administration at safe or inadvertently used doses in humans, which may be related to specific pathologies in mothers and their children.


Assuntos
Antioxidantes/farmacologia , Lactação , Compostos de Metilmercúrio/toxicidade , Vitamina A/análogos & derivados , Animais , Animais Recém-Nascidos , Catalase/metabolismo , Suplementos Nutricionais , Diterpenos , Feminino , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Compostos de Metilmercúrio/sangue , Oxirredução/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Ésteres de Retinil , Superóxido Dismutase/metabolismo , Vitamina A/sangue , Vitamina A/metabolismo , Vitamina A/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA