Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 71, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004727

RESUMO

BACKGROUND: Critical limb-threatening ischemia (CLTI) constitutes the most severe manifestation of peripheral artery disease, usually induced by atherosclerosis. CLTI patients suffer from high risk of amputation of the lower extremities and elevated mortality rates, while they have low options for surgical revascularization due to associated comorbidities. Alternatively, cell-based therapeutic strategies represent an effective and safe approach to promote revascularization. However, the variability seen in several factors such as cell combinations or doses applied, have limited their success in clinical trials, being necessary to reach a consensus regarding the optimal "cellular-cocktail" prior further application into the clinic. To achieve so, it is essential to understand the mechanisms by which these cells exert their regenerative properties. Herein, we have evaluated, for the first time, the regenerative and vasculogenic potential of a combination of endothelial colony forming cells (ECFCs) and mesenchymal stem cells (MSCs) isolated from adipose-tissue (AT), compared with ECFCs from umbilical cord blood (CB-ECFCs) and AT-MSCs, in a murine model of CLTI. METHODS: Balb-c nude mice (n:32) were distributed in four different groups (n:8/group): control shams, and ischemic mice (after femoral ligation) that received 50 µl of physiological serum alone or a cellular combination of AT-MSCs with either CB-ECFCs or AT-ECFCs. Follow-up of blood flow reperfusion and ischemic symptoms was carried out for 21 days, when mice were sacrificed to evaluate vascular density formation. Moreover, the long-term molecular changes in response to CLTI and both cell combinations were analyzed in a proteomic quantitative approach. RESULTS: AT-MSCs with either AT- or CB-ECFCs, promoted a significant recovery of blood flow in CLTI mice 21 days post-ischemia. Besides, they modulated the inflammatory and necrotic related processes, although the CB group presented the slowest ischemic progression along the assay. Moreover, many proteins involved in the repairing mechanisms promoted by cell treatments were identified. CONCLUSIONS: The combination of AT-MSCs with AT-ECFCs or with CB-ECFCs promoted similar revascularization in CLTI mice, by restoring blood flow levels, together with the modulation of the inflammatory and necrotic processes, and reduction of muscle damage. The protein changes identified are representative of the molecular mechanisms involved in ECFCs and MSCs-induced revascularization (immune response, vascular repair, muscle regeneration, etc.).


Assuntos
Tecido Adiposo , Modelos Animais de Doenças , Isquemia , Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Camundongos Nus , Animais , Camundongos , Isquemia/terapia , Isquemia/fisiopatologia , Cordão Umbilical/citologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Neovascularização Fisiológica , Células Endoteliais , Humanos
2.
Glia ; 71(1): 91-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35411970

RESUMO

In the central nervous system, oligodendrocytes synthesize the myelin, a specialized membrane to wrap axons in a discontinuous way allowing a rapid saltatory nerve impulse conduction. Oligodendrocytes express a number of growth factors and neurotransmitters receptors that allow them to sense the environment and interact with neurons and other glial cells. Depending on the cell cycle stage, oligodendrocytes may respond to these signals by regulating their survival, proliferation, migration, and differentiation. Among these signals are the endocannabinoids, lipidic molecules synthesized from phospholipids in the plasma membrane in response to cell activation. Here, we discuss the evidence showing that oligodendrocytes express a full endocannabinoid signaling machinery involved in physiological oligodendrocyte functions that can be therapeutically exploited to promote remyelination in central nervous system pathologies.


Assuntos
Endocanabinoides , Oligodendroglia , Endocanabinoides/metabolismo , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Diferenciação Celular/fisiologia
3.
Mol Med ; 28(1): 40, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397534

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already caused 6 million deaths worldwide. While asymptomatic individuals are responsible of many potential transmissions, the difficulty to identify and isolate them at the high peak of infection constitutes still a real challenge. Moreover, SARS-CoV-2 provokes severe vascular damage and thromboembolic events in critical COVID-19 patients, deriving in many related deaths and long-hauler symptoms. Understanding how these processes are triggered as well as the potential long-term sequelae, even in asymptomatic individuals, becomes essential. METHODS: We have evaluated, by application of a proteomics-based quantitative approach, the effect of serum from COVID-19 asymptomatic individuals over circulating angiogenic cells (CACs). Healthy CACs were incubated ex-vivo with the serum of either COVID-19 negative (PCR -/IgG -, n:8) or COVID-19 positive asymptomatic donors, at different infective stages: PCR +/IgG - (n:8) and PCR -/IgG + (n:8). Also, a label free quantitative approach was applied to identify and quantify protein differences between these serums. Finally, machine learning algorithms were applied to validate the differential protein patterns in CACs. RESULTS: Our results confirmed that SARS-CoV-2 promotes changes at the protein level in the serum of infected asymptomatic individuals, mainly correlated with altered coagulation and inflammatory processes (Fibrinogen, Von Willebrand Factor, Thrombospondin-1). At the cellular level, proteins like ICAM-1, TLR2 or Ezrin/Radixin were only up-regulated in CACs treated with the serum of asymptomatic patients at the highest peak of infection (PCR + /IgG -), but not with the serum of PCR -/IgG + individuals. Several proteins stood out as significantly discriminating markers in CACs in response to PCR or IgG + serums. Many of these proteins particiArticle title: Kindly check and confirm the edit made in the article title.pate in the initial endothelial response against the virus. CONCLUSIONS: The ex vivo incubation of CACs with the serum of asymptomatic COVID-19 donors at different stages of infection promoted protein changes representative of the endothelial dysfunction and inflammatory response after viral infection, together with activation of the coagulation process. The current approach constitutes an optimal model to study the response of vascular cells to SARS-CoV-2 infection, and an alternative platform to test potential inhibitors targeting either the virus entry pathway or the immune responses following SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , Imunoglobulina G , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2
4.
J Neurochem ; 158(3): 640-656, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33942314

RESUMO

CB1 cannabinoid receptor is widely expressed in the central nervous system of animals from late prenatal development to adulthood. Appropriate activation and signaling of CB1 cannabinoid receptors in cortical interneurons are crucial during perinatal/postnatal ages and adolescence, when long-lasting changes in brain activity may elicit subsequent appearance of disorders in the adult brain. Here we used an optimized immunoprecipitation protocol based on specific antibodies followed by shot-gun proteomics to find CB1 interacting partners in postnatal rat GABAergic cortical neurons in vitro at two different stages of maturation. Besides describing new proteins associated with CB1 like dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (DLAT), fatty acid synthase (FASN), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), voltage-dependent anion channel 1 (VDAC1), myosin phosphatase Rho-interacting protein (MPRIP) or usher syndrome type-1C protein-binding protein 1 (USHBP1), we show that the signaling complex of CB1 is different between maturational stages. Interestingly, the CB1 signaling complex is enriched at the more immature stage in mitochondrial associated proteins and metabolic molecular functions, whereas at more mature stage, CB1 complex is increased in maturation and synaptic-associated proteins. We describe also interacting partners specifically immunoprecipitated with either N-terminal or C-terminal CB1 directed antibodies. Our results highlight new players that may be affected by altered cannabinoid signaling at this critical window of postnatal cortical development.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Neurônios GABAérgicos/fisiologia , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Animais , Células Cultivadas , Feminino , Gravidez , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
5.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722151

RESUMO

In atherosclerosis, circulating angiogenic cells (CAC), also known as early endothelial progenitor cells (eEPC), are thought to participate mainly in a paracrine fashion by promoting the recruitment of other cell populations such as late EPC, or endothelial colony-forming cells (ECFC), to the injured areas. There, ECFC replace the damaged endothelium, promoting neovascularization. However, despite their regenerative role, the number and function of EPC are severely affected under pathological conditions, being essential to further understand how these cells react to such environments in order to implement their use in regenerative cell therapies. Herein, we evaluated the effect of direct incubation ex vivo of healthy CAC with the secretome of atherosclerotic arteries. By using a quantitative proteomics approach, 194 altered proteins were identified in the secretome of pre-conditioned CAC, many of them related to inhibition of angiogenesis (e.g., endostatin, thrombospondin-1, fibulins) and cell migration. Functional assays corroborated that healthy CAC released factors enhanced ECFC angiogenesis, but, after atherosclerotic pre-conditioning, the secretome of pre-stimulated CAC negatively affected ECFC migration, as well as their ability to form tubules on a basement membrane matrix assay. Overall, we have shown here, for the first time, the effect of atherosclerotic factors over the paracrine role of CAC ex vivo. The increased release of angiogenic inhibitors by CAC in response to atherosclerotic factors induced an angiogenic switch, by blocking ECFC ability to form tubules in response to pre-conditioned CAC. Thus, we confirmed here that the angiogenic role of CAC is highly affected by the atherosclerotic environment.


Assuntos
Aterosclerose/metabolismo , Movimento Celular , Proliferação de Células , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica , Comunicação Parácrina , Transdução de Sinais , Aterosclerose/patologia , Células Progenitoras Endoteliais/patologia , Humanos
6.
Proc Natl Acad Sci U S A ; 111(28): 10137-42, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982174

RESUMO

Endothelial colony-forming cells (ECFCs) are endothelial precursors that circulate in peripheral blood. Studies have demonstrated that human ECFCs have robust vasculogenic properties. However, whether ECFCs can exert trophic functions in support of specific stem cells in vivo remains largely unknown. Here, we sought to determine whether human ECFCs can function as paracrine mediators before the establishment of blood perfusion. We used two xenograft models of human mesenchymal stem cell (MSC) transplantation and studied how the presence of ECFCs modulates MSC engraftment and regenerative capacity in vivo. Human MSCs were isolated from white adipose tissue and bone marrow aspirates and were s.c. implanted into immunodeficient mice in the presence or absence of cord blood-derived ECFCs. MSC engraftment was regulated by ECFC-derived paracrine factors via platelet-derived growth factor BB (PDGF-BB)/platelet-derived growth factor receptor (PDGFR)-ß signaling. Cotransplanting ECFCs significantly enhanced MSC engraftment by reducing early apoptosis and preserving stemness-related properties of PDGFR-ß(+) MSCs, including the ability to repopulate secondary grafts. MSC engraftment was negligible in the absence of ECFCs and completely impaired in the presence of Tyrphostin AG1296, an inhibitor of PDGFR kinase. Additionally, transplanted MSCs displayed fate-restricted potential in vivo, with adipose tissue-derived and bone marrow-derived MSCs contributing exclusive differentiation along adipogenic and osteogenic lineages, respectively. This work demonstrates that blood-derived ECFCs can serve as paracrine mediators and regulate the regenerative potential of MSCs via PDGF-BB/PDGFR-ß signaling. Our data suggest the systematic use of ECFCs as a means to improve MSC transplantation.


Assuntos
Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Becaplermina , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/citologia , Feminino , Xenoenxertos , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Tirfostinas/farmacologia
7.
J Pediatr ; 164(3): 566-571, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24315508

RESUMO

OBJECTIVE: Endothelial colony-forming cells (ECFCs) are a subset of circulating endothelial progenitor cells that are particularly abundant in umbilical cord blood. We sought to determine whether ECFC abundance in cord blood is associated with maternal body-mass index (BMI) in nonpathologic pregnancies. STUDY DESIGN: We measured the level of ECFCs in the cord blood of neonates (n = 27) born from non-obese healthy mothers with nonpathologic pregnancies and examined whether ECFC abundance correlated with maternal BMI. We also examined the effect of maternal BMI on ECFC phenotype and function using angiogenic and vasculogenic assays. RESULTS: We observed variation in ECFC abundance among subjects and found a positive correlation between prepregnancy maternal BMI and ECFC content (r = 0.51, P = .007), which was independent of other obstetric factors. Despite this variation, ECFC phenotype and functionality were deemed normal and highly similar between subjects with maternal BMI <25 kg/m(2) and BMI between 25-30 kg/m(2), including the ability to form vascular networks in vivo. CONCLUSIONS: This study underlines the need to consider maternal BMI as a potential confounding factor for cord blood levels of ECFCs in future comparative studies between healthy and pathologic pregnancies.


Assuntos
Índice de Massa Corporal , Células Endoteliais/citologia , Sangue Fetal/citologia , Células-Tronco/citologia , Adulto , Células Cultivadas , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Nascimento Prematuro/sangue
8.
Int Forum Allergy Rhinol ; 14(7): 1245-1248, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38268107

RESUMO

KEY POINTS: T-cell activation in patients with chronic rhinosinusitis with nasal polyps (CRSwNP) is enriched by late cytotoxic T cells. The proportion of early and intermediate activated cytotoxic T cells decreases in nasal polyps of patients with CRSwNP. Our results identify late activated cytotoxic T cells as potential biomarkers or therapeutic targets for patients with CRSwNP.


Assuntos
Imunofenotipagem , Ativação Linfocitária , Pólipos Nasais , Rinite , Sinusite , Humanos , Pólipos Nasais/imunologia , Sinusite/imunologia , Rinite/imunologia , Doença Crônica , Ativação Linfocitária/imunologia , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Linfócitos T Citotóxicos/imunologia , Idoso , Rinossinusite
9.
Angiogenesis ; 16(4): 735-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23636611

RESUMO

Blood-derived endothelial colony-forming cells (ECFCs) have robust vasculogenic potential that can be exploited to bioengineer long-lasting human vascular networks in vivo. However, circulating ECFCs are exceedingly rare in adult peripheral blood. Because the mechanism by which ECFCs are mobilized into circulation is currently unknown, the reliability of peripheral blood as a clinical source of ECFCs remains a concern. Thus, there is a need to find alternative sources of autologous ECFCs. Here we aimed to determine whether ECFCs reside in the vasculature of human white adipose tissue (WAT) and to evaluate if WAT-derived ECFCs have equal clinical potential to blood-derived ECFCs. We isolated the complete endothelial cell (EC) population from intact biopsies of normal human subcutaneous WAT by enzymatic digestion and selection of CD31(+) cells. Subsequently, we extensively compared WAT-derived EC phenotype and functionality to bonafide ECFCs derived from both umbilical cord blood and adult peripheral blood. We demonstrated that human WAT is indeed a dependable source of ECFCs with indistinguishable properties to adult peripheral blood ECFCs, including hierarchical clonogenic ability, large expansion potential, stable endothelial phenotype, and robust in vivo blood vessel-forming capacity. Considering the unreliability and low rate of occurrence of ECFCs in adult blood and that biopsies of WAT can be obtained with minimal intervention in an ambulatory setting, our results indicate WAT as a more practical alternative to obtain large amounts of readily available autologous ECFCs for future vascular cell therapies.


Assuntos
Tecido Adiposo Branco/irrigação sanguínea , Células-Tronco Adultas/citologia , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Neovascularização Fisiológica , Adulto , Animais , Divisão Celular , Separação Celular , Ensaio de Unidades Formadoras de Colônias , Sangue Fetal/citologia , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Nus , Microvasos/crescimento & desenvolvimento , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Especificidade de Órgãos
10.
Int J Biol Sci ; 19(6): 1664-1680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063416

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection significantly affects the cardiovascular system, causing vascular damage and thromboembolic events in critical patients. Endothelial dysfunction represents one of the first steps in response to COVID-19 that might lead to cardiovascular complications and long-term sequelae. However, despite the enormous efforts in the last two years, the molecular mechanisms involved in such processes remain poorly understood. Herein, we analyzed the protein changes taking place in endothelial colony forming cells (ECFCs) after the incubation with the serum from individuals infected with COVID-19, whether asymptomatic or critical patients, by application of a label free-quantitative proteomics approach. Specifically, ECFCs from healthy individuals were incubated ex-vivo with the serum of either COVID-19 negative donors (PCR-/IgG-, n:8), COVID-19 asymptomatic donors at different infective stages (PCR+/ IgG-, n:8and PCR-/IgG+, n:8), or hospitalized critical COVID-19 patients (n:8), followed by proteomics analysis. In total, 590 proteins were differentially expressed in ECFCs in response to all infected serums. Predictive analysis highlighted several proteins like CAPN5, SURF4, LAMP2 or MT-ND1, as highly discriminating features between the groups compared. Protein changes correlated with viral infection, RNA metabolism or autophagy, among others. Remarkably, the angiogenic potential of ECFCs in response to the infected serums was impaired, and many of the protein alterations in response to the serum of critical patients were associated with cardiovascular-related pathologies.


Assuntos
COVID-19 , Sistema Cardiovascular , Humanos , Proteômica , SARS-CoV-2 , Imunoglobulina G , Células Cultivadas , Proteínas de Membrana , Calpaína
11.
Angiogenesis ; 15(3): 443-55, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22527199

RESUMO

Mesenchymal stem cells (MSCs) can generate multiple end-stage mesenchymal cell types and constitute a promising population of cells for regenerative therapies. Additionally, there is increasing evidence supporting other trophic activities of MSCs, including the ability to enable formation of vasculature in vivo. Although MSCs were originally isolated from the bone marrow, the presence of these cells in the stromal vascular fraction of multiple adult tissues has been recently recognized. However, it is unknown whether the capacity to modulate vasculogenesis is ubiquitous to all MSCs regardless of their tissue of origin. Here, we demonstrated that tissue-resident MSCs isolated from four distinct tissues have equal capacity to modulate endothelial cell function, including formation of vascular networks in vivo. MSCs were isolated from four murine tissues, including bone marrow, white adipose tissue, skeletal muscle, and myocardium. In culture, all four MSC populations secreted a plethora of pro-angiogenic factors that unequivocally induced proliferation, migration, and tube formation of endothelial colony-forming cells (ECFCs). In vivo, co-implantation of MSCs with ECFCs into mice generated an extensive network of blood vessels with ECFCs specifically lining the lumens and MSCs occupying perivascular positions. Importantly, there were no differences among all four MSCs evaluated. Our studies suggest that the capacity to modulate the formation of vasculature is a ubiquitous property of all MSCs, irrespective of their original anatomical location. These results validate multiple tissues as potential sources of MSCs for future cell-based vascular therapies.


Assuntos
Endotélio Vascular/citologia , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Endotélio Vascular/fisiologia , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica
12.
J Nutr ; 142(2): 227-32, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22190030

RESUMO

The postprandial metabolism of dietary fats implies that the production of TG-rich lipoproteins (TRL) contributes to the progression of plaque development. TRL and their remnants cause rapid receptor-mediated monocyte/macrophage lipid engorgement via the cell surface apoB48 receptor (apoB48R). However, the mechanistic basis for apoB48 receptor (APOB48R) regulation by postprandial TRL in monocytes and macrophages is not well established. In this study, we investigated the effects of postprandial TRL from healthy volunteers on the expression of APOB48R mRNA and lipid uptake in human THP-1 monocytes and THP-1-derived macrophages. The expression of APOB48R mRNA was upregulated in THP-1 monocytes, but downregulated in THP-1-derived macrophages when treated with postprandial TRL (P < 0.05), in a dose- and time-dependent manner. TG and free cholesterol were dramatically increased in THP-1-derived macrophages (140 and 50%, respectively; P < 0.05) and in THP-1 monocytes (160 and 95%, respectively; P < 0.05). This lipid accumulation was severely decreased (~50%; P < 0.05) in THP-1-derived macrophages by small interfering RNA (siRNA) targeting of APOB48R. Using PPAR and retinoid X receptor (RXR) agonists, antagonists, and siRNA, our data indicate that PPARα, PPARγ, and RXRα are involved in postprandial TRL-induced APOB48R transcriptional regulation. Co-incubation with acyl-CoA synthetase or acyl-CoA:cholesterol acyltransferase inhibitors potentiated the effects of postprandial TRL on the expression of APOB48R mRNA in THP-1 monocytes and THP-1-derived macrophages. Our findings collectively suggest that APOB48R represents a molecular target of postprandial TRL via PPAR-dependent pathways in human THP-1 monocytes and macrophages and advance a potentially important link between postprandial metabolism of dietary fats and atherogenesis.


Assuntos
Lipoproteínas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Linhagem Celular , Ácidos Graxos não Esterificados/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Lipoproteínas/química , PPAR alfa/metabolismo , PPAR gama/metabolismo , Período Pós-Prandial , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Receptores de Lipoproteínas/genética , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Triglicerídeos/química
13.
Antioxidants (Basel) ; 11(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624715

RESUMO

Cardiovascular diseases remain the leading cause of death worldwide, mainly triggered by the formation of atherosclerotic plaques that reduce blood flow. Angiogenic cell therapy based on endothelial colony forming cells (ECFCs) constitutes a promising alternative to promote vascular revascularization; however, under the oxidative environment that prevails in ischemic areas, these cells become impaired. Thus, it is necessary to investigate strategies to enhance their regenerative properties. Antioxidant substances, such as polyphenols, have been shown to be useful for this purpose. In the current study we evaluated the potential of mango leaves, olive leaves and red grape pomace extracts, rich in polyphenols, to promote ECFC reparative effects. For this, aqueous and ethanolic extracts of the aforementioned raw materials were obtained by pressurized liquid extraction (PLE). After evaluating the polyphenol content and the antioxidant activity, in vitro assays were carried out, and we found that ethanolic extracts at low concentrations improved angiogenic capacities of ECFCs and reduced proliferation, apoptosis, and the inflammatory response of these cells. Overall, mango leaves ethanolic extract provided the most promising results, but all three extracts ameliorated the functionality of ECFCs.

14.
Polymers (Basel) ; 14(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35808751

RESUMO

The addition of natural substances with pharmacoactive properties to polymeric biomedical devices would provide beneficial regarding the assimilation of these endoprostheses when implanted into a patient's body. The added drug would facilitate endothelization by regulating the inflammatory processes that such interventions entail, preventing contamination hazards and favoring the angiogenesis or formation of blood vessels in the tissue. The present work used mango leaf extract (MLE) obtained through pressurized ethanol for this purpose. Polylactic acid (PLA) in the form of filaments or 3D-printed disks was impregnated by means of supercritical technology with MLE for the culture essays. The release kinetics has been studied and the polymer matrices have been examined by scanning electron microscopy (SEM). The impregnated devices were subjected to in vitro culture of colony-forming endothelial cells. The influence of the different impregnation conditions used for the production of the MLE impregnated polymeric devices on the development of the cell culture was determined by fluorescence microscopy. The best results were obtained from the calcein cultures on 35 °C MLE impregnated into 3D-printed polymer disks.

15.
Stem Cell Res Ther ; 13(1): 266, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729651

RESUMO

BACKGROUND: Endothelial colony forming cells (ECFCs), alone or in combination with mesenchymal stem cells, have been selected as potential therapeutic candidates for critical limb-threatening ischemia (CLTI), mainly for those patients considered as "no-option," due to their capability to enhance revascularization and perfusion recovery of ischemic tissues. Nevertheless, prior to translating cell therapy to the clinic, biodistribution assays are required by regulatory guidelines to ensure biosafety as well as to discard undesired systemic translocations. Different approaches, from imaging technologies to qPCR-based methods, are currently applied. METHODS: In the current study, we have optimized a cell-tracking assay based on DiR fluorescent cell labeling and near-infrared detection for in vivo and ex vivo assays. Briefly, an improved protocol for DiR staining was set up, by incubation of ECFCs with 6.67 µM DiR and intensive washing steps prior cell administration. The minimal signal detected for the residual DiR, remaining after these washes, was considered as a baseline signal to estimate cell amounts correlated to the DiR intensity values registered in vivo. Besides, several assays were also performed to determine any potential effect of DiR over ECFCs functionality. Furthermore, the optimized protocol was applied in combination with qPCR amplification of specific human Alu sequences to assess the final distribution of ECFCs after intramuscular or intravenous administration to a murine model of CLTI. RESULTS: The optimized DiR labeling protocol indicated that ECFCs administered intramuscularly remained mainly within the hind limb muscle while cells injected intravenously were found in the spleen, liver and lungs. CONCLUSION: Overall, the combination of DiR labeling and qPCR analysis in biodistribution assays constitutes a highly sensitive approach to systemically track cells in vivo. Thereby, human ECFCs administered intramuscularly to CLTI mice remained locally within the ischemic tissues, while intravenously injected cells were found in several organs. Our data corroborate the need to perform biodistribution assays in order to define specific parameters such as the optimal delivery route for ECFCs before their application into the clinic.


Assuntos
Rastreamento de Células , Neovascularização Fisiológica , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Isquemia/terapia , Camundongos , Distribuição Tecidual
16.
Cells ; 11(8)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35455962

RESUMO

The risk of complications following surgical procedures is significantly increased in patients with SARS-CoV-2 infection. However, the mechanisms underlying these correlations are not fully known. Spinal cord injury (SCI) patients who underwent reconstructive surgery for pressure ulcers (PUs) before and during the COVID-19 pandemic were included in this study. The patient's postoperative progression was registered, and the subcutaneous white adipose tissue (s-WAT) surrounding the ulcers was analyzed by proteomic and immunohistochemical assays to identify the molecular/cellular signatures of impaired recovery. Patients with SCI and a COVID-19-positive diagnosis showed worse recovery and severe postoperative complications, requiring reintervention. Several proteins were upregulated in the adipose tissue of these patients. Among them, CKMT2 and CKM stood out, and CKM increased for up to 60 days after the COVID-19 diagnosis. Moreover, CKMT2 and CKM were largely found in MGCs within the s-WAT of COVID patients. Some of these proteins presented post-translational modifications and were targeted by autoantibodies in the serum of COVID patients. Overall, our results indicate that CKMT2, CKM, and the presence of MGCs in the adipose tissue surrounding PUs in post-COVID patients could be predictive biomarkers of postsurgical complications. These results suggest that the inflammatory response in adipose tissue may underlie the defective repair seen after surgery.


Assuntos
COVID-19 , Úlcera por Pressão , Traumatismos da Medula Espinal , Tecido Adiposo/metabolismo , COVID-19/complicações , Teste para COVID-19 , Creatina Quinase/metabolismo , Creatina Quinase Mitocondrial/metabolismo , Humanos , Pandemias , Úlcera por Pressão/epidemiologia , Úlcera por Pressão/etiologia , Úlcera por Pressão/cirurgia , Proteômica , SARS-CoV-2 , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/cirurgia , Supuração/complicações , Regulação para Cima
17.
Mol Ther Nucleic Acids ; 29: 76-87, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35721225

RESUMO

Despite the extraordinary advances achieved to beat COVID-19 disease, many questions remain unsolved, including the mechanisms of action of SARS-CoV-2 and which factors determine why individuals respond so differently to the viral infection. Herein, we performed an in silico analysis to identify host microRNA targeting ACE2, TMPRSS2, and/or RAB14, all genes known to participate in viral entry and replication. Next, the levels of six microRNA candidates previously linked to viral and respiratory-related pathologies were measured in the serum of COVID-19-negative controls (n = 16), IgG-positive COVID-19 asymptomatic individuals (n = 16), and critical COVID-19 patients (n = 17). Four of the peripheral microRNAs analyzed (hsa-miR-32-5p, hsa-miR-98-3p, hsa-miR-423-3p, and hsa-miR-1246) were upregulated in COVID-19 critical patients compared with COVID-19-negative controls. Moreover, hsa-miR-32-5p and hsa-miR-1246 levels were also altered in critical versus asymptomatic individuals. Furthermore, these microRNA target genes were related to viral infection, inflammatory response, and coagulation-related processes. In conclusion, SARS-CoV-2 promotes the alteration of microRNAs targeting the expression of key proteins for viral entry and replication, and these changes are associated with disease severity. The microRNAs identified could be taken as potential biomarkers of COVID-19 progression as well as candidates for future therapeutic approaches against this disease.

18.
J Pers Med ; 10(4)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096745

RESUMO

Despite promising advances in the medical management of spinal cord injury (SCI), there is still no available effective therapy to repair the neurological damage in patients who experience this life-transforming condition. Recently, we performed a phase II/III placebo-controlled randomized trial of safety and efficacy of growth hormone (GH) treatment in incomplete chronic traumatic spinal cord injury. The main findings were that the combined treatment of GH plus rehabilitation treatment is feasible and safe, and that GH but not placebo slightly improves the SCI individual motor score. Moreover, we found that an intensive and long-lasting rehabilitation program per se increases the functional outcome of SCI individuals. To understand the possible mechanisms of the improvement due to GH treatment (motor score) and due to rehabilitation (functional outcome), we used a proteomic approach. Here, we used a multiple proteomic strategy to search for recovery biomarkers in blood plasma with the potential to predict response to somatropin treatment and to delayed intensive rehabilitation. Forty-six patients were recruited and followed for a minimum period of 1 year. Patients were classified into two groups based on their treatment: recombinant somatropin (0.4 mg) or placebo. Both groups received rehabilitation treatment. Our strategy allowed us to perform one of the deepest plasma proteomic analyses thus far, which revealed two proteomic signatures with predictive value: (i) response to recombinant somatropin treatment and (ii) response to rehabilitation. The proteins implicated in these signatures are related to homeostasis, inflammation, and coagulation functions. These findings open novel possibilities to assess and therapeutically manage patients with SCI, which could have a positive impact on their clinical response.

19.
J Neurosci Methods ; 337: 108680, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32145227

RESUMO

BACKGROUND: Cannabinoid receptor 1 (CB1) identification by western blot (WB) has generated a great deal of controversial data making the interpretation of the results difficult. Our purpose is to find the most adequate experimental conditions to detect CB1 by WB and immunoprecipitation (IP) as a first step towards the study of CB1 interactome. NEW METHOD: We use CB1 knockout mice tissue as negative controls and describe appropriate sample handling conditions for CB1 detection by WB and IP from brain and cortical neuron cultures. RESULTS: Sample heating above 65 °C greatly impaired CB1 detection by WB, since it favored the formation of high molecular weight aggregates. We also show the convenience of using n-dodecyl-ß-d-maltoside (DDM) as a detergent for the detection of CB1 by WB and, mostly, for IP. COMPARISON WITH EXISTING METHOD(S): We obtain consistent and specific CB1 detection by WB and IP using four different commercial antibodies and KO tissue for an accurate CB1 identification. We clarify the identification of the receptor in complex samples compared with the diverse and unclear results obtained using standard WB methods. CONCLUSIONS: We establish experimental guidelines for the detection of CB1 by WB and the study of CB1 interacting proteins by IP. We propose a new interpretation of CB1 WB and IP data based on the folding and packing state of the protein and the detergent used. The standardization of the most advantageous conditions for coimmunoprecipitation (CoIP) would be a useful tool for the future study of the interactome of CB1.


Assuntos
Encéfalo , Ingestão de Alimentos , Animais , Western Blotting , Camundongos , Camundongos Knockout , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide , Receptores de Canabinoides/genética
20.
Stem Cell Res Ther ; 11(1): 106, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143690

RESUMO

BACKGROUND: Critical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities. Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization. Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues. METHODS: Balb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 µl physiological serum (SC, n:8) or 5 × 105 human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related. RESULTS: Administration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown. CONCLUSIONS: Our results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.


Assuntos
Neovascularização Fisiológica , Doença Arterial Periférica , Animais , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Isquemia/terapia , Camundongos , Camundongos Nus , Doença Arterial Periférica/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA