Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Astrobiology ; 23(12): 1245-1258, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054949

RESUMO

With advances in commercial space launch capabilities and reduced costs to orbit, humans may arrive on Mars within a decade. Both to preserve any signs of past (and extant) martian life and to protect the health of human crews (and Earth's biosphere), it will be necessary to assess the risk of cross-contamination on the surface, in blown dust, and into the near-subsurface (where exploration and resource-harvesting can be reasonably anticipated). Thus, evaluating for the presence of life and biosignatures may become a critical-path Mars exploration precursor in the not-so-far future, circa 2030. This Special Collection of papers from the Atacama Rover Astrobiology Drilling Studies (ARADS) project describes many of the scientific, technological, and operational issues associated with searching for and identifying biosignatures in an extreme hyperarid region in Chile's Atacama Desert, a well-studied terrestrial Mars analog environment. This paper provides an overview of the ARADS project and discusses in context the five other papers in the ARADS Special Collection, as well as prior ARADS project results.


Assuntos
Exobiologia , Marte , Humanos , Exobiologia/métodos , Meio Ambiente Extraterreno , Poeira
2.
Geobiology ; 12(1): 34-47, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24237661

RESUMO

The Iberian Pyrite Belt (IPB, southwest of Spain), the largest known massive sulfide deposit, fuels a rich chemolithotrophic microbial community in the Río Tinto area. However, the geomicrobiology of its deep subsurface is still unexplored. Herein, we report on the geochemistry and prokaryotic diversity in the subsurface (down to a depth of 166 m) of the Iberian Pyritic belt using an array of geochemical and complementary molecular ecology techniques. Using an antibody microarray, we detected polymeric biomarkers (lipoteichoic acids and peptidoglycan) from Gram-positive bacteria throughout the borehole. DNA microarray hybridization confirmed the presence of members of methane oxidizers, sulfate-reducers, metal and sulfur oxidizers, and methanogenic Euryarchaeota. DNA sequences from denitrifying and hydrogenotrophic bacteria were also identified. FISH hybridization revealed live bacterial clusters associated with microniches on mineral surfaces. These results, together with measures of the geochemical parameters in the borehole, allowed us to create a preliminary scheme of the biogeochemical processes that could be operating in the deep subsurface of the Iberian Pyrite Belt, including microbial metabolisms such as sulfate reduction, methanogenesis and anaerobic methane oxidation.


Assuntos
Bactérias/classificação , Biota , Euryarchaeota/classificação , Metano/metabolismo , Microbiologia do Solo , Solo/química , Sulfatos/metabolismo , Bactérias/genética , Bactérias/imunologia , Bactérias/metabolismo , Euryarchaeota/genética , Euryarchaeota/imunologia , Euryarchaeota/metabolismo , Hibridização in Situ Fluorescente , Análise em Microsséries , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Análise Serial de Proteínas , Espanha
3.
J Mol Microbiol Biotechnol ; 22(2): 94-104, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22627128

RESUMO

Chemolithoautotrophic acidophilic bacteria, which belong to the genus Leptospirillum, can only grow with Fe(II) as electron donor and oxygen as an electron acceptor. Members of this genus play an important role in bioleaching sulfide ores. We used nearly complete genome sequences of Leptospirillum ferrooxidans (group I), Leptospirillum rubarum, Leptospirillum '5-way CG' (group II) and Leptospirillum ferrodiazotrophum (group III) to identify cytochromes that are likely involved in electron transfer chain(s). The results show the presence of genes encoding a number of c-type cytochromes (18-20 genes were identified in each species), as well as bd and cbb3 oxidases. Genes encoding cbb3 oxidase are clustered, with predicted genes involved in cbb3 maturation proteins. Duplication of cbb3 encoding genes (ccoNO) was detected in all four genomes. Interestingly, these micro-organisms also contain genes that potentially encode bc1 and b6f-like complexes organized into two putative operon structures. To date, the Leptospirillum genus includes the only organisms reported to have genes coding for two different bc complexes. This study provides detailed insights into the components of electron transfer chains of Leptospirillum spp., revealing their conservation among leptospirilla groups and suggesting that there may be a single common pathway for electron transport between Fe(II) and oxygen.


Assuntos
Bactérias/genética , Grupo dos Citocromos c/genética , Genoma Bacteriano , Bactérias/classificação , Bactérias/enzimologia , Hibridização Genômica Comparativa , Grupo dos Citocromos c/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Compostos Férricos/metabolismo , Duplicação Gênica , Óperon , Oxirredução , Oxirredutases/metabolismo , Oxigênio/metabolismo , Periplasma/enzimologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA