Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 739: 109559, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906097

RESUMO

Glycolytic and respiratory fluxes were analyzed in cancer and non-cancer cells. The steady-state fluxes in energy metabolism were used to estimate the contributions of aerobic glycolytic and oxidative phosphorylation (OxPhos) pathways to the cellular ATP supply. The rate of lactate production - corrected for the fraction generated by glutaminolysis - is proposed as the appropriate way to estimate glycolytic flux. In general, the glycolytic rates estimated for cancer cells are higher than those found in non-cancer cells, as originally observed by Otto Warburg. The rate of basal or endogenous cellular O2 consumption corrected for non-ATP synthesizing O2 consumption, measured after inhibition by oligomycin (a specific, potent and permeable ATP synthase inhibitor), has been proposed as the appropriate way to estimate mitochondrial ATP synthesis-linked O2 flux or net OxPhos flux in living cells. Detecting non-negligible oligomycin-sensitive O2 consumption rates in cancer cells has revealed that the mitochondrial function is not impaired, as claimed by the Warburg effect. Furthermore, when calculating the relative contributions to cellular ATP supply, under a variety of environmental conditions and for different types of cancer cells, it was found that OxPhos pathway was the main ATP provider over glycolysis. Hence, OxPhos pathway targeting can be successfully used to block in cancer cells ATP-dependent processes such as migration. These observations may guide the re-design of novel targeted therapies.


Assuntos
Trifosfato de Adenosina , Neoplasias , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Glicólise/fisiologia , Fosforilação Oxidativa , Ciclo do Ácido Cítrico
2.
Arch Biochem Biophys ; 743: 109667, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327962

RESUMO

The marine archaeon Methanosarcina acetivorans contains a putative NAD + -independent d-lactate dehydrogenase (D-iLDH/glycolate oxidase) encoded by the MA4631 gene, belonging to the FAD-oxidase C superfamily. Nucleotide sequences similar to MA4631 gene, were identified in other methanogens and Firmicutes with >90 and 35-40% identity, respectively. Therefore, the lactate metabolism in M. acetivorans is reported here. Cells subjected to intermittent pulses of oxygen (air-adapted; AA-Ma cells) consumed lactate only in combination with acetate, increasing methane production and biomass yield. In AA-Ma cells incubated with d-lactate plus [14C]-l-lactate, the radioactive label was found in methane, CO2 and glycogen, indicating that lactate metabolism fed both methanogenesis and gluconeogenesis. Moreover, d-lactate oxidation was coupled to O2-consumption which was sensitive to HQNO; also, AA-Ma cells showed high transcript levels of gene dld and those encoding subunits A (MA1006) and B (MA1007) of a putative cytochrome bd quinol oxidase, compared to anaerobic control cells. An E. coli mutant deficient in dld complemented with the MA4631 gene, grew with d-lactate as carbon source and showed membrane-bound d-lactate:quinone oxidoreductase activity. The product of the MA4631 gene is a FAD-containing monomer showing activity of iLDH with preference to d-lactate. The results suggested that air adapted M. acetivorans is able to co-metabolize lactate and acetate with associated oxygen consumption by triggering the transcription and synthesis of the D-iLDH and a putative cytochrome bd: methanophenazine (quinol) oxidoreductase. Biomass generation and O2 consumption, suggest a potentially new oxygen detoxification mechanism coupled to energy conservation in this methanogen.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Oxigênio , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredutases/metabolismo , Metano/metabolismo , Citocromos/metabolismo , Acetatos , Lactatos/metabolismo
3.
J Cell Biochem ; 123(4): 701-718, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931340

RESUMO

Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.


Assuntos
Redes e Vias Metabólicas , Processamento de Proteína Pós-Traducional , Acetilação , Histonas , Cinética
4.
Med Res Rev ; 39(6): 2397-2426, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31111530

RESUMO

Over the last decade, three major advances have contributed in improving the response rates against cancer including, immunotherapy; greater understanding of the molecular, biochemical, and cellular mechanisms in carcinogenesis thereby providing drug targets; and identification of reliable biomarkers for early detection to facilitate the earlier stage treatment of disease. However, no single universal cancer cure has yet been found, although combinations from the above areas have steadily improved survival outcomes. Hence, chemotherapy remains a key component in the oncologist's arsenal for cancer therapy, despite frequent development of drug resistance and more aggressive cancers with onset of advanced stage metastases. The focus here is to explore the repurposing of old drugs that cause pro-oxidative overload to overcome onset of resistance to chemotherapy and enhance chemotherapeutic responses, particularly against metastatic cancer. Excellent examples of US Food and Drug Administration approved drugs suitable for repurposing are the potent and specific thioreductase inhibitor auranofin and the nonsteroidal anti-inflammatory drug, celecoxib. Recently, both drugs were shown to selectively target and kill metastatic cancer cells and cancer stem cells (CSCs), predominantly by promoting excessive mitochondrial reactive oxygen species. Thus, targeting intracellular redox systems of advanced stage metastatic cancer cells and CSCs can promote an overload of pro-oxidative stress to activate the intrinsic pathway for programmed cell death. It is envisaged that more clinical studies will incorporate longer term use of repurposed drugs, such as auranofin or celecoxib, to target redox systems in cancer cells as part of common practice postcancer diagnosis, providing enhanced chemotherapeutic responses and increased cancer survival.


Assuntos
Reposicionamento de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Oxidantes/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Oxirredução
5.
J Cell Physiol ; 234(5): 5524-5536, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30272821

RESUMO

Mutations in p53 are strongly associated with several highly malignant cancer phenotypes but its role in regulating energy metabolism has not been completely elucidated. The effect on glycolysis and oxidative phosphorylation (OxPhos) of mutant p53R248Q overexpression in HeLa cells (HeLa-M) was analyzed and compared with cells overexpressing wild-type p53 (HeLa-H) and nontransfected cells containing negligible p53 levels (HeLa-L). p53 R248Q overexpression induced early cell detachment during in vitro growth; however, detached HeLa-M cells showed high viability, shorter generation time and significant diminution in the adhesion proteins E-cadherin and ß-catenin versus HeLa-H and HeLa-L cells. Under normoxia, a lower growth rate of attached HeLa-M cells correlated with decreased levels of proliferating cell nuclear antigen (PCNA), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), adenosine monophosphate-activated protein kinase (AMPK), mitochondrial proteins (20-80%) and OxPhos flux (69 ± 12%). On the contrary, HeLa-M also showed increased contents of CDKN1A, nuclear factor κB (NF-κB), c-MYC, hypoxia-inducible factor 1-α (HIF-1α; 1-4 times), glycolytic HIF-1α targets (2-4 times), and glycolysis flux (2-fold) versus HeLa-H. In consequence, glycolysis provided ~70% of the cellular adenosine triphosphate (ATP) in HeLa-M cells under normoxia whereas, OxPhos predominated (65-82%) in HeLa-H and HeLa-L cells. Pifithrin-α, a specific p53 inhibitor, did not alter the p53 R248Q target protein contents and OxPhos and glycolytic fluxes, and a poor HIF-1α-p53 R248Q interaction was attained, in HeLa-M cells. These observations suggested that p53 R248Q deficiently interacted with pifithrin-α and HIF-1α. Therefore, lower mitochondrial biogenesis, deficient HIF-1α/mutant p53 interaction, and development of a pseudohypoxic state under normoxia were the apparent biochemical mechanisms underlying glycolysis activation and OxPhos downregulation in HeLa-M cells.


Assuntos
Glicólise , Mutação , Fosforilação Oxidativa , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Proliferação de Células , Feminino , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Biogênese de Organelas , Hipóxia Tumoral , Microambiente Tumoral , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/patologia
6.
Toxicol Appl Pharmacol ; 370: 65-77, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30878505

RESUMO

The resveratrol (RSV) efficacy to affect the proliferation of several cancer cell lines was initially examined. RSV showed higher potency to decrease growth of metastatic HeLa and MDA-MB-231 (IC50 = 200-250 µM) cells than of low metastatic MCF-7, SiHa and A549 (IC50 = 400-500 µM) and non-cancer HUVEC and 3T3 (IC50≥600 µM) cells after 48 h exposure. In order to elucidate the biochemical mechanisms underlying RSV anti-cancer effects, the energy metabolic pathways and the oxidative stress metabolism were analyzed in HeLa cells as metastatic-type cell model. RSV (200 µM/48 h) significantly decreased both glycolysis and oxidative phosphorylation (OxPhos) protein contents (30-90%) and fluxes (40-70%) vs. non-treated cells. RSV (100 µM/1-5 min) also decreased at a greater extent OxPhos flux (net ADP-stimulated respiration) of isolated tumor mitochondria (> 50%) than of non-tumor mitochondria (< 50%), particularly with succinate as oxidizable substrate. In addition, RSV promoted an excessive cellular ROS (2-3 times) production corresponding with a significant decrement in the SOD activity (but not in its content) and GSH levels; whereas the catalase, glutahione reductase, glutathione peroxidase and glutathione-S-transferase activities (but not their contents) remained unchanged. RSV (200 µM/48 h) also induced cellular death although not by apoptosis but rather by promoting a strong mitophagy activation (65%). In conclusion, RSV impaired OxPhos by inducing mitophagy and ROS over-production, which in turn halted metastatic HeLa cancer cell growth.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/farmacologia , Células 3T3 , Animais , Linhagem Celular Tumoral , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos , Mitofagia/efeitos dos fármacos , Metástase Neoplásica/prevenção & controle , Compostos Fitoquímicos/farmacologia
7.
Arch Biochem Biophys ; 669: 39-49, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128085

RESUMO

To enhance our understanding of the control of archaeal carbon central metabolism, a detailed analysis of the regulation mechanisms of both fructose1,6-bisphosphatase (FruBPase) and ADP-phosphofructokinase-1 (ADP-PFK1) was carried out in the methanogen Methanosarcina acetivorans. No correlations were found among the transcript levels of the MA_1152 and MA_3563 (frubpase type II and pfk1) genes, the FruBPase and ADP-PFK1 activities, and their protein contents. The kinetics of the recombinant FruBPase II and ADP-PFK1 were hyperbolic and showed simple mixed-type inhibition by AMP and ATP, respectively. Under physiological metabolite concentrations, the FruBPase II and ADP-PFK1 activities were strongly modulated by their inhibitors. To assess whether these enzymes were also regulated by a phosphorylation/dephosphorylation process, the recombinant enzymes and cytosolic-enriched fractions were incubated in the presence of commercial protein phosphatase or protein kinase. De-phosphorylation of ADP-PFK1 slightly decreased its activity (i.e. Vmax) and did not change its kinetic parameters and oligomeric state. Thus, the data indicated a predominant metabolic regulation of both FruBPase and ADP-PFK1 activities by adenine nucleotides and suggested high degrees of control on the respective pathway fluxes.


Assuntos
Proteínas Arqueais/metabolismo , Frutose-Bifosfatase/metabolismo , Methanosarcina/metabolismo , Fosfofrutoquinase-1/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Galinhas , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/isolamento & purificação , Frutosefosfatos/metabolismo , Genes Arqueais , Cinética , Methanosarcina/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/isolamento & purificação , Fosforilação , Inibidores de Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional
8.
Chem Res Toxicol ; 32(3): 405-420, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30628442

RESUMO

Many different diseases are associated with oxidative stress. One of the main consequences of oxidative stress at the cellular level is lipid peroxidation, from which toxic aldehydes may be generated. Below their toxicity thresholds, some aldehydes are involved in signaling processes, while others are intermediaries in the metabolism of lipids, amino acids, neurotransmitters, and carbohydrates. Some aldehydes ubiquitously distributed in the environment, such as acrolein or formaldehyde, are extremely toxic to the cell. On the other hand, aldehyde dehydrogenases (ALDHs) are able to detoxify a wide variety of aldehydes to their corresponding carboxylic acids, thus helping to protect from oxidative stress. ALDHs are located in different subcellular compartments such as cytosol, mitochondria, nucleus, and endoplasmic reticulum. The aim of this review is to analyze, and highlight, the role of different ALDH isoforms in the detoxification of aldehydes generated in processes that involve high levels of oxidative stress. The ALDH physiological relevance becomes evident by the observation that their expression and activity are enhanced in different pathologies that involve oxidative stress such as neurodegenerative disorders, cardiopathies, atherosclerosis, and cancer as well as inflammatory processes. Furthermore, ALDH mutations bring about several disorders in the cell. Thus, understanding the mechanisms by which these enzymes participate in diverse cellular processes may lead to better contend with the damage caused by toxic aldehydes in different pathologies by designing modulators and/or protocols to modify their activity or expression.


Assuntos
Aldeído Desidrogenase/metabolismo , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/fisiopatologia , Humanos , Estresse Oxidativo
9.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1679-1690, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28648642

RESUMO

Cancer stem cells are responsible for tumor recurrence and metastasis. A new highly reproducible procedure for human breast cancer MCF-7 stem cells (BCSC) isolation and selection was developed by using a combination of hypoxia/hypoglycemia plus taxol and adriamycin for 24h. The BCSC enriched fraction (i) expressed (2-15 times) the typical stemness protein markers CD44+, ALDH1A3 and Oct 3/4; (ii) increased its clonogenicity index (20-times), invasiveness profile (>70%), migration capacity (100%) and ability to form mammospheres, compared to its non-metastatic MCF-7 counterpart. This isolation and selection protocol was successful to obtain stem cell enriched fractions from A549, SiHa and medulloblastoma cells. Since the secretion of HPI/AMF cytokine seems involved in metastasis, the effects of erytrose-4-phosphate (E4P) and 6-phosphogluconate (6PG), potent HPI inhibitors, on the acquisition of the breast stem cell-like phenotype were also evaluated. The presence of E4P during the BCSC selection deterred the development of the stemness phenotype, whereas both extracellular E4P (5-250nM) and 6PG (1µM) as well as siRNA HPI/AMF depressed the BCSC invasiveness ability (>90%), clonogenicity index (>90%) and contents (50-96%) of stemness (CD44, ALDH1A), pluripotency (p38 MAPK, Oct3/4, wnt/ß-catenin) and EMT (SNAIL, MMP-1, vimentin) markers. The cytokine inhibitor repertaxin (10nM) or the anti-IL-8 or anti-TGF-ß monoclonal antibodies (10µg/mL) did not significantly affect the BCSC metastatic phenotype. E4P also diminished (75%) the formation and growth of MCF-7 stem cell mammospheres. These results suggested that E4P by directly interacting with extracellular HPI/AMF may be an effective strategy to deter BCSC growth and progression.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Hipóxia Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Transição Epitelial-Mesenquimal/genética , Feminino , Gluconatos/administração & dosagem , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Células MCF-7 , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Paclitaxel/administração & dosagem , RNA Interferente Pequeno/genética , Fosfatos Açúcares/administração & dosagem , Sulfonamidas/administração & dosagem
10.
Mol Pharm ; 15(6): 2151-2164, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29746779

RESUMO

To establish alternative targeted therapies against triple negative (TN) breast cancer, the energy metabolism and the sensitivity of cell growth, migration, and invasiveness toward metabolic, canonical, and NSAID inhibitors were analyzed in MDA-MB-231 and MDA-MB-468, two TN metastatic breast cancer cell lines, under both normoxia (21% O2) and hypoxia (0.1% O2). For comparative purposes, the analysis was also carried out in the less-metastatic breast MCF-7 cancer cells. Under normoxia, oxidative phosphorylation (OxPhos) was significantly higher (2-times) in MDA-MB-468 than in MDA-MB-231 and MCF-7, whereas their glycolytic fluxes and OxPhos and glycolytic protein contents were all similar. TN cancer cell lines mainly depended on OxPhos (62-75%), whereas MCF-7 cells equally depended on both pathways for ATP supply. Hypoxia for 24 h promoted a significant increase (>20 times) in the glycolytic transcriptional master factor HIF1-α in its target proteins GLUT-1, HKI and II, and LDH-A (2-4 times) as well as in the glycolytic flux (1.3-2 times) vs normoxia in MDA-MB-468, MDA-MB-231, and MCF-7. On the contrary, hypoxia decreased (15-60%) the contents of COXIV, 2OGDH, ND1, and ATP synthase as well as the OxPhos flux (50-75%), correlating with a high mitophagy level in the three cell lines. Under hypoxia, the three cancer cell lines mainly depended on glycolysis (70-80%). Anti-mitochondrial drugs (oligomycin, casiopeina II-gly, and methoxy-TEA) and celecoxib, at doses used to block OxPhos, significantly decreased TN cancer cell proliferation (IC50 = 2-20 µM), migration capacity (10-90%), and invasiveness (25-65%). The present data support the use of mitochondrially targeted inhibitors for the treatment of TN breast carcinoma.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Células 3T3 , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia
11.
Biochim Biophys Acta ; 1860(6): 1163-72, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26922831

RESUMO

BACKGROUND: Acetate is an end-product of the PPi-dependent fermentative glycolysis in Entamoeba histolytica; it is synthesized from acetyl-CoA by ADP-forming acetyl-CoA synthetase (ACS) with net ATP synthesis or from acetyl-phosphate by a unique PPi-forming acetate kinase (AcK). The relevance of these enzymes to the parasite ATP and PPi supply, respectively, are analyzed here. METHODS: The recombinant enzymes were kinetically characterized and their physiological roles were analyzed by transcriptional gene silencing and further metabolic analyses in amoebae. RESULTS: Recombinant ACS showed higher catalytic efficiencies (Vmax/Km) for acetate formation than for acetyl-CoA formation and high acetyl-CoA levels were found in trophozoites. Gradual ACS gene silencing (49-93%) significantly decreased the acetate flux without affecting the levels of glycolytic metabolites and ATP in trophozoites. However, amoebae lacking ACS activity were unable to reestablish the acetyl-CoA/CoA ratio after an oxidative stress challenge. Recombinant AcK showed activity only in the acetate formation direction; however, its substrate acetyl-phosphate was undetected in axenic parasites. AcK gene silencing did not affect acetate production in the parasites but promoted a slight decrease (10-20%) in the hexose phosphates and PPi levels. CONCLUSIONS: These results indicated that the main role of ACS in the parasite energy metabolism is not ATP production but to recycle CoA for glycolysis to proceed under aerobic conditions. AcK does not contribute to acetate production but might be marginally involved in PPi and hexosephosphate homeostasis. SIGNIFICANCE: The previous, long-standing hypothesis that these enzymes importantly contribute to ATP and PPi supply in amoebae can now be ruled out.


Assuntos
Acetato Quinase/fisiologia , Acetato-CoA Ligase/fisiologia , Difosfatos/metabolismo , Entamoeba histolytica/metabolismo , Acetato Quinase/genética , Acetato-CoA Ligase/genética , Acetatos/metabolismo , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Etanol/metabolismo , Glicólise
12.
J Cell Physiol ; 232(6): 1346-1359, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27661776

RESUMO

The accelerated growth of solid tumors leads to episodes of both hypoxia and hypoglycemia (HH) affecting their intermediary metabolism, signal transduction, and transcriptional activity. A previous study showed that normoxia (20% O2 ) plus 24 h hypoglycemia (2.5 mM glucose) increased glycolytic flux whereas oxidative phosphorylation (OxPhos) was unchanged versus normoglycemia in HeLa cells. However, the simultaneous effect of HH on energy metabolism has not been yet examined. Therefore, the effect of hypoxia (0.1-1% O2 ) plus hypoglycemia on the energy metabolism of HeLa cells was analyzed by evaluating protein content and activity, along with fluxes of both glycolysis and OxPhos. Under hypoxia, in which cell growth ceased and OxPhos enzyme activities, ΔΨm and flux were depressed, hypoglycemia did not stimulate glycolytic flux despite increasing H-RAS, p-AMPK, GLUT1, GLUT3, and HKI levels, and further decreasing mitochondrial enzyme content. The impaired mitochondrial function in HH cells correlated with mitophagy activation. The depressed OxPhos and unchanged glycolysis pattern was also observed in quiescent cells from mature multicellular tumor spheroids, suggesting that these inner cell layers are similarly subjected to HH. The principal ATP supplier was glycolysis for HH 2D monolayer and 3D quiescent spheroid cells. Accordingly, the glycolytic inhibitors iodoacetate and gossypol were more effective than mitochondrial inhibitors in decreasing HH-cancer cell viability. Under HH, stem cell-, angiogenic-, and EMT-biomarkers, as well as glycoprotein-P content and invasiveness, were also enhanced. These observations indicate that HH cancer cells develop an attenuated Warburg and pronounced EMT- and invasive-phenotype. J. Cell. Physiol. 232: 1346-1359, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Transição Epitelial-Mesenquimal , Glicólise , Hipoglicemia/patologia , Esferoides Celulares/patologia , Trifosfato de Adenosina/farmacologia , Antineoplásicos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Células HeLa , Humanos , Concentração Inibidora 50 , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Invasividade Neoplásica , Oxigênio/farmacologia , Fenótipo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
13.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3221-3236, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27538376

RESUMO

BACKGROUND: Exceedingly high therapeutic/experimental doses of metabolic drugs such as oxamate, aminooxyacetate (AOA) and dichloroacetate (DCA) are required to diminish growth, glycolysis and oxidative phosphorylation (OxPhos) of different cancer cells. To identify the mechanisms of action of these drugs on cancer energy metabolism, a systematic analysis of their specificities was undertaken. METHODS: Hepatocarcinoma AS-30D cells were treated with the inhibitors and glycolysis and OxPhos enzyme activities, metabolites and fluxes were analyzed. Kinetic modeling of glycolysis was used to identify the regulatory mechanisms. RESULTS: Oxamate (i) not only inhibited LDH, but also PYK and ENO activities inducing an increase in the cytosolic NAD(P)H, Fru1,6BP and DHAP levels in AS-30D cells; (ii) it slightly inhibited HPI, ALD and Glc6PDH; and (iii) it inhibited pyruvate-driven OxPhos in isolated heart mitochondria. AOA (i) strongly inhibited both AAT and AlaT, and 2-OGDH and glutamate-driven OxPhos; and (ii) moderately affected GAPDH and TPI. DCA slightly affected pyruvate-driven OxPhos and Glc6PDH. Kinetic modeling of cancer glycolysis revealed that oxamate inhibition of LDH, PYK and ENO was insufficient to achieve glycolysis flux inhibition. To do so, HK, HPI, TPI and GAPDH have to be also inhibited by the accumulated Fru1,6BP and DHAP induced by oxamate. CONCLUSION: Oxamate, AOA, and DCA are not specific drugs since they inhibit several enzymes/transporters of the glycolytic and OxPhos pathways through direct interaction or indirect mechanisms. GENERAL SIGNIFICANCE: These data explain why oxamate or AOA, through their multisite inhibitory actions on glycolysis or OxPhos, may be able to decrease the proliferation of cancer cells.


Assuntos
Ácido Amino-Oxiacético/farmacologia , Ácido Dicloroacético/farmacologia , Metabolismo Energético/efeitos dos fármacos , Neoplasias/metabolismo , Ácido Oxâmico/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Simulação por Computador , Fosfato de Di-Hidroxiacetona/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Glicólise/efeitos dos fármacos , Humanos , Cinética , Camundongos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Modelos Moleculares , NADP/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Ratos Wistar , Sus scrofa
14.
Adv Exp Med Biol ; 979: 91-121, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28429319

RESUMO

Free-living microorganisms may become suitable models for removal of heavy metals from polluted water bodies, sediments, and soils by using and enhancing their metal accumulating abilities. The available research data indicate that protists of the genus Euglena are a highly promising group of microorganisms to be used in bio-remediation of heavy metal-polluted aerobic and anaerobic acidic aquatic environments. This chapter analyzes the variety of biochemical mechanisms evolved in E. gracilis to resist, accumulate and remove heavy metals from the environment, being the most relevant those involving (1) adsorption to the external cell pellicle; (2) intracellular binding by glutathione and glutathione polymers, and their further compartmentalization as heavy metal-complexes into chloroplasts and mitochondria; (3) polyphosphate biosynthesis; and (4) secretion of organic acids. The available data at the transcriptional, kinetic and metabolic levels on these metabolic/cellular processes are herein reviewed and analyzed to provide mechanistic basis for developing genetically engineered Euglena cells that may have a greater removal and accumulating capacity for bioremediation and recycling of heavy metals.


Assuntos
Resistência a Medicamentos/fisiologia , Euglena/fisiologia , Metais Pesados/metabolismo , Biodegradação Ambiental
15.
Biochim Biophys Acta ; 1850(2): 263-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450181

RESUMO

BACKGROUND: The principal oxidative-stress defense in the human parasite Trypanosoma cruzi is the tryparedoxin-dependent peroxide detoxification pathway, constituted by trypanothione reductase (TryR), tryparedoxin (TXN), tryparedoxin peroxidase (TXNPx) and tryparedoxin-dependent glutathione peroxidase A (GPxA). Here, Metabolic Control Analysis (MCA) was applied to quantitatively prioritize drug target(s) within the pathway by identifying its flux-controlling enzymes. METHODS: The recombinant enzymes were kinetically characterized at physiological pH/temperature. Further, the pathway was in vitro reconstituted using enzyme activity ratios and fluxes similar to those observed in the parasites; then, enzyme and substrate titrations were performed to determine their degree of control on flux. Also, kinetic characterization of the whole pathway was performed. RESULTS: Analyses of the kinetic properties indicated that TXN is the less efficient pathway enzyme derived from its high Kmapp for trypanothione and low Vmax values within the cell. MCA established that the TXN-TXNPx and TXN-GPxA redox pairs controlled by 90-100% the pathway flux, whereas 10% control was attained by TryR. The Kmapp values of the complete pathway for substrates suggested that the pathway flux was determined by the peroxide availability, whereas at high peroxide concentrations, flux may be limited by NADPH. CONCLUSION: These quantitative kinetic and metabolic analyses pointed out to TXN as a convenient drug target due to its low catalytic efficiency, high control on the flux of peroxide detoxification and role as provider of reducing equivalents to the two main peroxidases in the parasite. GENERAL SIGNIFICANCE: MCA studies provide rational and quantitative criteria to select enzymes for drug-target development.


Assuntos
Oxirredutases/metabolismo , Peróxidos/metabolismo , Proteínas de Protozoários/metabolismo , Tiorredoxinas/metabolismo , Trypanosoma cruzi/metabolismo , Doença de Chagas/tratamento farmacológico , Doença de Chagas/genética , Doença de Chagas/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Cinética , Oxirredutases/química , Oxirredutases/genética , Peróxidos/química , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Trypanosoma cruzi/química , Trypanosoma cruzi/genética
16.
Biochim Biophys Acta ; 1853(12): 3266-78, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434996

RESUMO

The role of p53 as modulator of OxPhos and glycolysis was analyzed in HeLa-L (cells containing negligible p53 protein levels) and HeLa-H (p53-overexpressing) human cervix cancer cells under normoxia and hypoxia. In normoxia, functional p53, mitochondrial enzyme contents, mitochondrial electrical potential (ΔΨm) and OxPhos flux increased in HeLa-H vs. HeLa-L cells; whereas their glycolytic enzyme contents and glycolysis flux were unchanged. OxPhos provided more than 70% of the cellular ATP and proliferation was abolished by anti-mitochondrial drugs in HeLa-H cells. In hypoxia, both cell proliferations were suppressed, but HeLa-H cells exhibited a significant decrease in OxPhos protein contents, ΔΨm and OxPhos flux. Although glycolytic function was also diminished vs. HeLa-L cells in hypoxia, glycolysis provided more than 60% of cellular ATP in HeLa-H cells. The energy metabolism phenotype of HeLa-H cells was reverted to that of HeLa-L cells by incubating with pifithrin-α, a p53-inhibitor. In normoxia, the energy metabolism phenotype of breast cancer MCF-7 cells was similar to that of HeLa-H cells, whereas p53shRNAMCF-7 cells resembled the HeLa-L cell phenotype. In hypoxia, autophagy proteins and lysosomes contents increased 2-5 times in HeLa-H cells suggesting mitophagy activation. These results indicated that under normoxia p53 up-regulated OxPhos without affecting glycolysis, whereas under hypoxia, p53 down-regulated both OxPhos (severely) and glycolysis (weakly). These p53 effects appeared mediated by the formation of p53-HIF-1α complexes. Therefore, p53 exerts a dual and contrasting regulatory role on cancer energy metabolism, depending on the O2level.


Assuntos
Neoplasias da Mama/metabolismo , Metabolismo Energético , Proteína Supressora de Tumor p53/fisiologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias da Mama/patologia , Divisão Celular , Hipóxia Celular , Feminino , Células HeLa , Humanos , Células MCF-7 , Neoplasias do Colo do Útero/patologia
17.
Biochim Biophys Acta ; 1843(6): 1043-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24440856

RESUMO

Epithelial-mesenchymal transition (EMT) and cellular invasiveness are two pivotal processes for the development of metastatic tumor phenotypes. The metastatic profile of non-metastatic MCF-7 cells growing as multi-cellular tumor microspheroids (MCTSs) was analyzed by determining the contents of the EMT, invasive and migratory proteins, as well as their migration and invasiveness potential and capacity to secrete active cytokines such as the glucose phosphate isomerase/AMF (GPI/AMF). As for the control, the same analysis was also performed in MCF-7 and MDA-MB-231 (highly metastatic, MDA) monolayer cells, and in stage IIIB and IV human metastatic breast biopsies. The proliferative cell layers (PRL) of mature MCF-7 MCTSs, MDA monolayer cells and metastatic biopsies exhibited increased cellular contents (2-15 times) of EMT (ß-catenin, SNAIL), migratory (vimentin, cytokeratin, and fibronectin) and invasive (MMP-1, VEGF) proteins versus MCF-7 monolayer cells, quiescent cell layers of mature MCF-7 MCTS and non-metastatic breast biopsies. The increase in metastatic proteins correlated with substantially elevated cellular abilities for migration (18-times) and invasiveness (13-times) and with the higher level (6-times) of the cytokine GPI/AMF in the extracellular medium of PRL, as compared to MCF-7 monolayer cells. Interestingly, the addition of the GPI/AMF inhibitors erythrose-4-phosphate or 6-phosphogluconate at micromolar doses significantly decreased its extracellular activity (>80%), with a concomitant diminution in the metastatic protein content and migratory tumor cell capacity, and with no inhibitory effect on tumor lactate production or toxicity on 3T3 mouse fibroblasts. The present findings provide new insights into the discovery of metabolic inhibitors to be used as complementary therapy against metastatic and aggressive tumors.


Assuntos
Neoplasias da Mama/prevenção & controle , Carcinoma Ductal de Mama/prevenção & controle , Movimento Celular/efeitos dos fármacos , Gluconatos/farmacologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Esferoides Celulares/efeitos dos fármacos , Fosfatos Açúcares/farmacologia , Células 3T3 , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/secundário , Proliferação de Células/efeitos dos fármacos , Estudos Transversais , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Glucose-6-Fosfato Isomerase/metabolismo , Humanos , Ácido Láctico/metabolismo , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Fenótipo , Esferoides Celulares/patologia
18.
Biochim Biophys Acta ; 1833(3): 541-51, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23195224

RESUMO

During multi-cellular tumor spheroid growth, oxygen and nutrient gradients develop inducing specific genetic and metabolic changes in the proliferative and quiescent cellular layers. An integral analysis of proteomics, metabolomics, kinetomics and fluxomics revealed that both proliferative- (PRL) and quiescent-enriched (QS) cellular layers of mature breast tumor MCF-7 multi-cellular spheroids maintained similar glycolytic rates (3-5 nmol/min/10(6) cells), correlating with similar GLUT1, GLUT3, PFK-1, and HKII contents, and HK and LDH activities. Enhanced glycolytic fluxes in both cell layer fractions also correlated with higher HIF-1α content, compared to MCF-7 monolayer cultures. On the contrary, the contents of the mitochondrial proteins GA-K, ND1, COXIV, PDH-E1α, 2-OGDH, SDH and F1-ATP synthase (20 times) and the oxidative phosphorylation (OxPhos) flux (2-times) were higher in PRL vs. QS. Enhanced mitochondrial metabolism in the PRL layers correlated with an increase in the oncogenes h-Ras and c-Myc, and transcription factors p32 and PGC-1α, which are involved in the OxPhos activation. On the other hand, the lower mitochondrial function in QS was associated with an increase in Beclin, LC3B, Bnip3 and LAMP protein levels, indicating active mitophagy and lysosome biosynthesis processes. Although a substantial increase in glycolysis was developed, OxPhos was the predominant ATP supplier in both QS and PRL layers. Therefore, targeted anti-mitochondrial therapy by using oligomycin (IC(50)=11 nM), Casiopeina II-gly (IC(50)=40 nM) or Mitoves (IC(50)=7 nM) was effective to arrest MCF-7 spheroid growth without apparent effect on normal epithelial breast tissue at similar doses; canonical anti-neoplastic drugs such as cisplatin and tamoxifen were significantly less potent.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Proteínas Mitocondriais/metabolismo , Mitofagia/efeitos dos fármacos , Oligomicinas/farmacologia , Compostos Organometálicos/farmacologia , Esferoides Celulares/efeitos dos fármacos , Antineoplásicos/farmacologia , Western Blotting , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cobre/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteoma/análise , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Desacopladores/farmacologia
19.
Arch Toxicol ; 88(7): 1327-50, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24792321

RESUMO

Significant efforts have been made for the development of new anticancer drugs (protein kinase or proteasome inhibitors, monoclonal humanized antibodies) with presumably low or negligible side effects and high specificity. However, an in-depth analysis of the side effects of several currently used canonical (platin-based drugs, taxanes, anthracyclines, etoposides, antimetabolites) and new generation anticancer drugs as the first line of clinical treatment reveals significant perturbation of glycolysis and oxidative phosphorylation. Canonical and new generation drug side effects include decreased (1) intracellular ATP levels, (2) glycolytic/mitochondrial enzyme/transporter activities and/or (3) mitochondrial electrical membrane potentials. Furthermore, the anti-proliferative effects of these drugs are markedly attenuated in tumor rho (0) cells, in which functional mitochondria are absent; in addition, several anticancer drugs directly interact with isolated mitochondria affecting their functions. Therefore, several anticancer drugs also target the energy metabolism, and hence, the documented inhibitory effect of anticancer drugs on cancer growth should also be linked to the blocking of ATP supply pathways. These often overlooked effects of canonical and new generation anticancer drugs emphasize the role of energy metabolism in maintaining cancer cells viable and its targeting as a complementary and successful strategy for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos/efeitos adversos , Desenho de Fármacos , Glicólise/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/patologia
20.
Mini Rev Med Chem ; 24(12): 1187-1202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39004839

RESUMO

Accelerated aerobic glycolysis is one of the main metabolic alterations in cancer, associated with malignancy and tumor growth. Although glycolysis is one of the most studied properties of tumor cells, recent studies demonstrate that oxidative phosphorylation (OxPhos) is the main ATP provider for the growth and development of cancer. In this last regard, the levels of mRNA and protein of OxPhos enzymes and transporters (including glutaminolysis, acetate and ketone bodies catabolism, free fatty acid ß-oxidation, Krebs Cycle, respiratory chain, phosphorylating system- ATP synthase, ATP/ADP translocator, Pi carrier) are altered in tumors and cancer cells in comparison to healthy tissues and organs, and non-cancer cells. Both energy metabolism pathways are tightly regulated by transcriptional factors, oncogenes, and tumor-suppressor genes, all of which dictate their protein levels depending on the micro-environmental conditions and the type of cancer cell, favoring cancer cell adaptation and growth. In the present review paper, variation in the mRNA and protein levels as well as in the enzyme/ transporter activities of the OxPhos machinery is analyzed. An integral omics approach to mitochondrial energy metabolism pathways may allow for identifying their use as suitable, reliable biomarkers for early detection of cancer development and metastasis, and for envisioned novel, alternative therapies.


Assuntos
Biomarcadores Tumorais , Proteínas Mitocondriais , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Biomarcadores Tumorais/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Metabolismo Energético , Animais , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA