Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cancer Cell Int ; 21(1): 69, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482809

RESUMO

BACKGROUND: Colorectal cancer (CRC) is among the deadliest cancers, wherein early dissemination of tumor cells, and consequently, metastasis formation, are the main causes of mortality and poor prognosis. Cofilin-1 (CFL-1) and its modulators, LIMK1/SSH1, play key roles in mediating the invasiveness by driving actin cytoskeleton reorganization in various cancer types. However, their clinical significance and prognostic value in CRC has not been fully explored. Here, we evaluated the clinical contribution of these actin regulators according to TNM and consensus molecular subtypes (CMSs) classification. METHODS: CFL-1, LIMK1 and SSH1 mRNA/protein levels were assessed by real-time PCR and immunohistochemical analyses using normal adjacent and tumor tissues obtained from a clinical cohort of CRC patients. The expression levels of these proteins were associated with clinicopathological features by using the chi square test. In addition, using RNA-Seq data of CRC patients from The Cancer Genome Atlas (TCGA) database, we determine how these actin regulators are expressed and distributed according to TNM and CMSs classification. Based on gene expression profiling, Kaplan-Meier survival analysis was used to evaluated overall survival. RESULTS: Bioinformatic analysis revealed that LIMK1 expression was upregulated in all tumor stages. Patients with high levels of LIMK1 demonstrated significantly lower overall survival rates and exhibited greater lymph node metastatic potential in a clinical cohort. In contrast, CFL-1 and SSH1 have expression downregulated in all tumor stages. However, immunohistochemical analyses showed that patients with high protein levels of CFL-1 and SSH1 exhibited greater lymph node metastatic potential and greater depth of local invasion. In addition, using the CMSs classification to evaluate different biological phenotypes of CRC, we observed that LIMK1 and SSH1 genes are upregulated in immune (CMS1) and mesenchymal (CMS4) subtypes. However, patients with high levels of LIMK1 also demonstrated significantly lower overall survival rates in canonical (CMS2), and metabolic (CMS3) subtypes. CONCLUSIONS: We demonstrated that CFL-1 and its modulators, LIMK1/SSH1, are differentially expressed and associated with lymph node metastasis in CRC. Finally, this expression profile may be useful to predict patients with aggressive signatures, particularly, the immune and mesenchymal subtypes of CRC.

2.
Phytother Res ; 35(7): 3769-3780, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33792975

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer-related death globally. In spite of the increasing knowledge on molecular characteristics of different cancer types including CRC, there is limitation in the development of an effective treatment. The present study aimed to verify the antitumor effect of kopsanone, an indole alkaloid. To achieve this, we treated human colon cancer cells (Caco-2 and HCT-116) with kopsanone and analyzed its effects on cell viability, cell-cell adhesion, and actin cytoskeleton organization. In addition, functional assays including micronuclei formation, colony formation, cell migration, and invasiveness were performed. We observed that kopsanone reduced viability and proliferation and induced micronuclei formation of HCT-116 cells. Also, kopsanone inhibited anchorage-dependent colony formation and modulated adherens junctions (AJs), thus increasing the localization of E-cadherin and ß-catenin in the cytosol of the invasive cells. Finally, fluorescence assays showed that kopsanone decreased stress fibers formation and reduced migration but not invasion of HCT-116 cells. Taken together, these findings indicate that kopsanone reduces proliferation and migration of HCT-116 cells via modulation of AJs and can therefore be considered for future in vivo and clinical investigation as potential therapeutic agent for treatment of CRC.


Assuntos
Neoplasias do Colo , Alcaloides Indólicos/farmacologia , Células CACO-2 , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Células HCT116 , Humanos
3.
J Cell Biochem ; 118(3): 442-445, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27632701

RESUMO

Radiotherapy is widely used for advanced rectal tumors. However, refractory metastasis has become the major cause of therapy failure in rectal cancer patients. Understanding the molecular mechanism that controls the aggressive cellular response to this treatment is essential for developing new therapeutic applications and improving radiotherapy response in colorectal cancer patients. Using the progeny of cells that were submitted to irradiation, we have demonstrated that the PI3K/AKT, Wnt/ß-catenin signaling pathways as well as ERK1/2 downstream of EPHA4 receptor activation, play an important role in the regulation of events related with the EMT development, which may be associated with the therapeutic failure in rectal cancer after radiotherapy. Here, we further discuss about EphA4 receptor as a potential therapeutic target for the treatment of this cancer type. J. Cell. Biochem. 118: 442-445, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Transição Epitelial-Mesenquimal/efeitos da radiação , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Receptor EphA4/metabolismo , Neoplasias Retais/metabolismo , Neoplasias Retais/radioterapia , Via de Sinalização Wnt/efeitos da radiação , Transição Epitelial-Mesenquimal/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor EphA4/genética , Neoplasias Retais/genética , Neoplasias Retais/patologia , Via de Sinalização Wnt/genética
4.
Tumour Biol ; 39(3): 1010428317695914, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28351318

RESUMO

Citral is a natural compound that has shown cytotoxic and antiproliferative effects on breast and hematopoietic cancer cells; however, there are few studies on melanoma cells. Oxidative stress is known to be involved in all stages of melanoma development and is able to modulate intracellular pathways related to cellular proliferation and death. In this study, we hypothesize that citral exerts its cytotoxic effect on melanoma cells by the modulation of cellular oxidative status and/or intracellular signaling. To test this hypothesis, we investigated the antiproliferative and cytotoxic effects of citral on B16F10 murine melanoma cells evaluating its effects on cellular oxidative stress, DNA damage, cell death, and important signaling pathways, as these pathways, namely, extracellular signal-regulated kinases 1/2 (ERK1/2), AKT, and phosphatidylinositol-3 kinase, are involved in cell proliferation and differentiation. The p53 and nuclear factor kappa B were also investigated due to their ability to respond to intracellular stress. We observed that citral exerted antiproliferative and cytotoxic effects in B16F10; induced oxidative stress, DNA lesions, and p53 nuclear translocation; and reduced nitric oxide levels and nuclear factor kappa B, ERK1/2, and AKT. To investigate citral specificity, we used non-neoplastic human and murine cells, HaCaT (human skin keratinocytes) and NIH-3T3 cells (murine fibroblasts), and observed that although citral effects were not specific for cancer cells, non-neoplastic cells were more resistant to citral than B16F10. These findings highlight the potential clinical utility of citral in melanoma, with a mechanism of action involving the oxidative stress generation, nitric oxide depletion, and interference in signaling pathways related to cell proliferation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Melanoma/tratamento farmacológico , Monoterpenos/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Monoterpenos Acíclicos , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Melanoma/patologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , NF-kappa B/genética , Células NIH 3T3 , Óxido Nítrico/metabolismo , Proteína Supressora de Tumor p53/genética
6.
Tumour Biol ; 37(9): 12411-12422, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27323967

RESUMO

Radiotherapy is widely used for advanced rectal tumors. However, tumor recurrence after this treatment tends to be more aggressive and is associated with a poor prognosis. Uncovering the molecular mechanism that controls this recurrence is essential for developing new therapeutic applications. In the present study, we demonstrated that radiation increases the EphA4 activation level of the survivor progeny of colorectal cancer cells submitted to this treatment and that such activation promoted the internalization of a complex E-cadherin-EphA4, inducing cell-cell adhesion disruption. Moreover, EphA4 knockdown in the progeny of irradiated cells reduced the migratory and invasive potentials and metalloprotease activity induced by irradiation. Finally, we demonstrated that the cell migration and invasion potential were regulated by AKT and ERK1/2 signaling, with the ERK1/2 activity being dependent on EphA4. In summary, our study demonstrates that these signaling pathways could be responsible for the therapeutic failure, thereby promoting local invasion and metastasis in rectal cancer after radiotherapy. We also postulate that EphA4 is a potential therapeutic target for colorectal cancer treatment.


Assuntos
Neoplasias Colorretais/radioterapia , Receptor EphA4/fisiologia , Transdução de Sinais/fisiologia , Antígenos CD , Caderinas/análise , Neoplasias Colorretais/patologia , Doxazossina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Células HT29 , Humanos , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/fisiologia
7.
Tumour Biol ; 37(4): 5337-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26561471

RESUMO

The participation of oxidative stress in the mechanism of metformin action in breast cancer remains unclear. We investigated the effects of clinical (6 and 30 µM) and experimental concentrations of metformin (1000 and 5000 µM) in MCF-7 and in MDA-MB-231 cells, verifying cytotoxicity, oxidative stress, DNA damage, and intracellular pathways related to cell growth and survival after 24 h of drug exposure. Clinical concentrations of metformin decreased metabolic activity of MCF-7 cells in the MTT assay, which showed increased oxidative stress and DNA damage, although cell death and impairment in the proliferative capacity were observed only at higher concentrations. The reduction in metabolic activity and proliferation in MDA-MB-231 cells was present only at experimental concentrations after 24 h of drug exposition. Oxidative stress and DNA damage were induced in this cell line at experimental concentrations. The drug decreased cytoplasmic extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT and increased nuclear p53 and cytoplasmic transforming growth factor ß1 (TGF-ß1) in both cell lines. These findings suggest that metformin reduces cell survival by increasing reactive oxygen species, which induce DNA damage and apoptosis. A relationship between the increase in TGF-ß1 and p53 levels and the decrease in ERK1/2 and AKT was also observed. These findings suggest the mechanism of action of metformin in both breast cancer cell lineages, whereas cell line specific undergoes redox changes in the cells in which proliferation and survival signaling are modified. Taken together, these results highlight the potential clinical utility of metformin as an adjuvant during the treatment of luminal and triple-negative breast cancer.


Assuntos
Metformina/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fator de Crescimento Transformador beta1/biossíntese , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética
8.
J Cell Biochem ; 115(12): 2175-87, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25103643

RESUMO

Radiotherapy remains a major approach to adjuvant therapy for patients with advanced colorectal cancer, however, the fractionation schedules frequently allow for the repopulation of surviving tumors cells, neoplastic progression, and subsequent metastasis. The aim of the present study was to analyze the transgenerational effects induced by radiation and evaluate whether it could increase the malignant features on the progeny derived from irradiated parental colorectal cancer cells, Caco-2, HT-29, and HCT-116. The progeny of these cells displayed a differential radioresistance as seen by clonogenic and caspase activation assay and had a direct correlation with survivin expression as observed by immunoblotting. Immunofluorescence showed that the most radioresistant progenies had an aberrant morphology, disturbance of the cell-cell adhesion contacts, disorganization of the actin cytoskeleton, and vimentin filaments. Only the progeny derived from intermediary radioresistant cells, HT-29, reduced the E-cadherin expression and overexpressed ß-catenin and vimentin with increased cell migration, invasion, and metalloprotease activation as seen by immunoblotting, wound healing, invasion, and metalloprotease activity assay. We also observed that this most aggressive progeny increased the Wnt/ß-catenin-dependent TCF/LEF activity and underwent an upregulation of mesenchymal markers and downregulation of E-cadherin, as determined by qRT-PCR. Our results showed that the intermediate radioresistant cells can generate more aggressive cellular progeny with the EMT-like phenotype. The Wnt/ß-catenin pathway may constitute an important target for new adjuvant treatment schedules with radiotherapy, with the goal of reducing the migratory and invasive potential of the remaining cells after treatment.


Assuntos
Movimento Celular/efeitos da radiação , Transição Epitelial-Mesenquimal/efeitos da radiação , Via de Sinalização Wnt , Citoesqueleto de Actina/metabolismo , Antígenos CD , Apoptose , Células CACO-2 , Caderinas/metabolismo , Caspases/metabolismo , Forma Celular , Neoplasias Colorretais , Células HT29 , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Invasividade Neoplásica , Tolerância a Radiação , Survivina , Vimentina/metabolismo , beta Catenina/metabolismo
9.
J Membr Biol ; 247(1): 23-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186357

RESUMO

Studies have reported that Na,K-ATPase interacts with E-cadherin to stabilize (AJs) and regulate the expression of claudins, the main proteins present in the tight junction (TJ) in epithelial cells containing caveolae. However, the role of this ATPase in the regulation of the AJ and TJ proteins in colorectal cancer cells as well as the molecular events underlying this event in a caveolae-independent system remain undefined. In the present study, we used ouabain, a classic drug known to inhibit Na,K-ATPase, and Caco-2 cells, which are a well-established human colorectal cancer model that does not exhibit caveolae. We demonstrated that ouabain treatment resulted in a reduction of the ß1 Na,K-ATPase protein and cell redistribution of the AJ proteins E-cadherin and ß-catenin, as well as the α1 Na,K-ATPase subunit. Furthermore, ouabain increased claudin-3 protein levels, impaired the TJ barrier function and increased cell viability and proliferation during the early stages of treatment. Additionally, the observed ouabain-induced events were dependent on the activation of ERK1/2 signaling; but in contrast to previous studies, this signaling cascade was caveolae-independent. In conclusion, our findings strongly suggest that α1 and ß1 Na,K-ATPase downregulation and ERK1/2 activation induced by ouabain are interlinked events that play an important role during cell-cell adhesion loss, which is an important step during the tumor progression of colorectal carcinomas.


Assuntos
Cavéolas/metabolismo , Neoplasias Colorretais/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Claudina-3 , Neoplasias Colorretais/genética , Humanos , Transdução de Sinais , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
10.
Parasitology ; 141(2): 241-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24135238

RESUMO

Tritrichomonas foetus is a protist that causes bovine trichomoniasis and presents a well-developed Golgi. There are very few studies concerning the Golgi in trichomonads. In this work, monoclonal antibodies were raised against Golgi of T. foetus and used as a tool on morphologic and biochemical studies of this organelle. Among the antibodies produced, one was named mAb anti-Golgi 20.3, which recognized specifically the Golgi complex by fluorescence and electron microscopy. By immunoblotting this antibody recognized two proteins with 60 and 66 kDa that were identified as putative beta-tubulin and adenosine triphosphatase, respectively. The mAb 20.3 also recognized the Golgi complex of the Trichomonas vaginalis, a human parasite. In addition, the nucleotide coding sequences of these proteins were identified and included in the T. foetus database, and the 3D structure of the proteins was predicted. In conclusion, this study indicated: (1) adenosine triphosphatase is present in the Golgi, (2) ATPase is conserved between T. foetus and T. vaginalis, (3) there is new information concerning the nucleic acid sequences and protein structures of adenosine triphosphatase and beta-tubulin from T. foetus and (4) the mAb anti-Golgi 20.3 is a good Golgi marker and can be used in future studies.


Assuntos
Adenosina Trifosfatases/metabolismo , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Complexo de Golgi/ultraestrutura , Infecções Protozoárias em Animais/parasitologia , Tritrichomonas foetus/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Sequência de Bases , Bovinos , Feminino , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão/veterinária , Microscopia de Fluorescência/veterinária , Modelos Moleculares , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência/veterinária , Análise de Sequência de DNA/veterinária , Trichomonas vaginalis/enzimologia , Trichomonas vaginalis/imunologia , Tritrichomonas foetus/enzimologia , Tritrichomonas foetus/genética , Tritrichomonas foetus/imunologia
11.
BMC Complement Altern Med ; 14: 175, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24886139

RESUMO

BACKGROUND: Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. METHODS: Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 µg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett's or Tukey's post hoc tests, as appropriate. RESULTS: We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p<0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. CONCLUSIONS: The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the anticancer potential of açaí may help in the development of chemopreventive drugs and may have therapeutic effects in the treatment of breast cancer.


Assuntos
Antineoplásicos Fitogênicos/análise , Euterpe/química , Antineoplásicos Fitogênicos/farmacologia , Arecaceae/química , Autofagia/efeitos dos fármacos , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Frutas/química , Humanos , Células MCF-7 , Microscopia Eletrônica de Transmissão , Minerais , Valor Nutritivo , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Polifenóis/análise , Sementes/química
12.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189087, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395237

RESUMO

Cofilin-1 (CFL1) modulates dynamic actin networks by severing and enhancing depolymerization. The upregulation of cofilin-1 expression in several cancer types is associated with tumor progression and metastasis. However, recent discoveries indicated relevant cofilin-1 functions under oxidative stress conditions, interplaying with mitochondrial dynamics, and apoptosis networks. In this scenario, these emerging roles might impact the response to clinical therapy and could be used to enhance treatment efficacy. Here, we highlight new perspectives of cofilin-1 in the therapy resistance context and discussed how cofilin-1 is involved in these events, exploring aspects of its contribution to therapeutic resistance. We also provide an analysis of CFL1 expression in several tumors predicting survival. Therefore, understanding how exactly coflin-1 plays, particularly in therapy resistance, may pave the way to the development of treatment strategies and improvement of patient survival.


Assuntos
Actinas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
13.
Protein J ; 43(2): 333-350, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347326

RESUMO

A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 µM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and ß-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.


Assuntos
Cajanus , Folhas de Planta , Humanos , Cajanus/química , Folhas de Planta/química , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Serina Proteases/química , Serina Proteases/isolamento & purificação , Serina Proteases/metabolismo
14.
Am J Physiol Cell Physiol ; 304(2): C170-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23114967

RESUMO

In many gut chronic inflammatory conditions, intestinal epithelium (IE) is deprived of the protection of the mucus secreted by IE-specialized cells. In these events, bleeding and subsequent lysis of erythrocytes are common. This may lead to the release of high amounts of heme in the intestinal lumen, which interacts with IE. Previous works from our group have shown that heme itself is a proinflammatory molecule, activating a number of phlogistic signaling events in a nicotinamide adenine dinucleotide phosphate oxidase (NADPHox)-dependent manner. In this study, we aim to evaluate the effects of heme upon a well-established nontransformed small intestine epithelial cell lineage (IEC 6). Our results show that free heme evokes intracellular reactive oxygen species (ROS) production by IEC 6 cells, which is inhibited both by pharmacological inhibition with diphenyleneiodonium (10 µM), a NADPHox inhibitor, and small interfering RNA-mediated suppression of NOX1, a constitutive NADPHox isoform present in intestinal epithelial cells. Focal adhesion kinase phosphorylation and actin cytoskeleton polymerization are also induced by heme in a NADPHox-dependent manner. Heme increases monolayer permeability and redistributes key modulators of cell-cell adhesion as zona occludens-1 and E-cadherin proteins via NADPHox signaling. Heme promotes IEC 6 cell migration and proliferation, phenomena also regulated by NADPHox-derived ROS. Heme, in NADPHox-activating concentrations, is able to induce mRNA expression of IL-6, a cytokine implicated in inflammatory and tumorigenic responses. These data indicate a prominent role for heme-derived signaling in the pathophysiology of intestinal mucosa dysfunction and address an important role of NADPHox activity on the pathogenesis of intestinal inflammatory conditions.


Assuntos
Células Epiteliais/efeitos dos fármacos , Heme/farmacologia , Mucosa Intestinal/efeitos dos fármacos , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Caderinas/fisiologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Duodeno/efeitos dos fármacos , Duodeno/enzimologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/enzimologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Inativação Gênica , Interleucina-6/biossíntese , Mucosa Intestinal/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , NADPH Oxidases/antagonistas & inibidores , Oniocompostos/farmacologia , Permeabilidade/efeitos dos fármacos , Fosforilação , Ratos , Transdução de Sinais/genética , Proteína da Zônula de Oclusão-1/fisiologia
15.
Metabolites ; 13(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37512496

RESUMO

Açaí, Euterpe oleracea Mart., is a native plant from the Amazonian and is rich in several phytochemicals with anti-tumor activities. The aim was to analyze the effects of açaí seed oil on colorectal adenocarcinoma (ADC) cells. In vitro analyses were performed on CACO-2, HCT-116, and HT-29 cell lines. The strains were treated with açaí seed oil for 24, 48, and 72 h, and cell viability, death, and morphology were analyzed. Molecular docking was performed to evaluate the interaction between the major compounds in açaí seed oil and Annexin A2. The viability assay showed the cytotoxic effect of the oil in colorectal adenocarcinoma cells. Acai seed oil induced increased apoptosis in CACO-2 and HCT-116 cells and interfered with the cell cycle. Western blotting showed an increased expression of LC3-B, suggestive of autophagy, and Annexin A2, an apoptosis regulatory protein. Molecular docking confirmed the interaction of major fatty acids with Annexin A2, suggesting a role of açaí seed oil in modulating Annexin A2 expression in these cancer cell lines. Our results suggest the anti-tumor potential of açaí seed oil in colorectal adenocarcinoma cells and contribute to the development of an active drug from a known natural product.

16.
J Cell Biochem ; 113(9): 2957-66, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22552949

RESUMO

During malignant transformation, changes in the expression profile of glycans may be involved in a variety of events, including the loss of cell-cell and cell-matrix adhesion, migration, invasion, and evasion of apoptosis. Therefore, modulation of glycan expression with drugs has promising therapeutic potential for various cancer types. In this study, we investigated the in vitro anticancer activity of the N-glycan biosynthesis inhibitors (swainsonine and tunicamycin) in cells derived from colorectal cancer (CRC). We also examined whether these inhibitors are able to induce radiosensitization and toxicity when used in combination with cisplatin or irinotecan, two current anticancer drugs. Our results show that treatment with tunicamycin inhibits cellular mechanisms related to the malignant phenotype, such as anchorage-dependent and anchorage-independent colony formation, migration and invasion, in undifferentiated HCT-116 colon cancer cells, whereas swainsonine only inhibits cell migration. We also observed that tunicamycin, but not swainsonine, caused radiosensitivity in HCT-116 cells. Moreover, the combination of swainsonine with cisplatin or irinotecan enhanced their toxicity in HCT-116 cells, while the combination of tunicamycin with these drugs had no effect. Given these results, we suggest that the modulation of N-glycan biosynthesis appears to be a potential therapeutic tool for CRC treatment because inhibition of this process induced anticancer activity in vitro. Additionally, the inhibition of the N-glycan biosynthesis in combination with chemotherapic drugs is a promising therapeutic strategy for enhancing radiation therapy.


Assuntos
Neoplasias Colorretais/metabolismo , Polissacarídeos/metabolismo , Tunicamicina/farmacologia , Western Blotting , Células CACO-2 , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Citometria de Fluxo , Células HCT116 , Células HT29 , Humanos , Irinotecano , Swainsonina/farmacologia
17.
Cancer Biol Ther ; 23(1): 1-13, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35944058

RESUMO

The PI3K/Akt and Wnt/ß-catenin pathways play an important role in the acquisition of the malignant phenotype in cancer. However, there are few data regarding the role of the interplay between both pathways in colorectal cancer (CRC) progression. The mutational status and the clinicopathological characteristics of PI3K/Akt and Wnt/ß-catenin pathways were accessed by bioinformatic analysis whereas that the impact of the interplay between the activity of both pathways to explain tumorigenic potential was performed in vitro using IGF-1 and Wnt3a treatments in CRC cell models. The mutational status of these pathways did not influence the survival of CRC patients, but an association between clinicopathological characteristics in patients with mutations in one, but not in both pathways was observed. A potentiating effect on the activation of both pathways and enhanced cellular migration and proliferation was observed when both pathways were activated simultaneously with IGF-1 and Wnt3a. In addition, these effects were hindered after pretreatment with LY294002, a specific PI3K inhibitor, suggesting some dependence between these two signaling cascades. Our findings show that, regardless of mutational status, there is an interplay between the activity of PI3K/Akt and Wnt/ß-catenin pathways that contributes to events related to CRC progression and that the reversal of such events using a PI3K inhibitor highlights the value of targeting these pathways for potential directed therapies in CRC patients.


Assuntos
Neoplasias Colorretais , beta Catenina , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/farmacologia , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
18.
Eur J Pharmacol ; 933: 175253, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067803

RESUMO

The drug, 5-fluorouracil (5FU) is a standard first-line treatment for colorectal cancer (CRC) patients. However, drug resistance acquisition remains an important challenge for effective clinical outcomes. Here, we established a long-term drug-resistant CRC model and explored the cellular events underlying 5FU resistance. We showed that 5FU-treated cells (HCT-116 5FUR) using a prolonged treatment protocol were significantly more resistant than parental cells. Likewise, cell viability and IC50 values were also observed to increase in HCT-116 5FUR cells when treated with increasing doses of oxaliplatin, indicating a cross-resistance mechanism to other cytotoxic agents. Moreover, HCT-116 5FUR cells exhibited metabolic and molecular changes, as evidenced by increased thymidylate synthase levels and upregulated mRNA levels of ABCB1. HCT-116 5FUR cells were able to overcome S phase arrest and evade apoptosis, as well as activate autophagy, as indicated by increased LC3B levels. Cells treated with low and high doses displayed epithelial-mesenchymal transition (EMT) features, as observed by decreased E-cadherin and claudin-3 levels, increased vimentin protein levels, and increased SLUG, ZEB2 and TWIST1 mRNA levels. Furthermore, HCT-116 5FUR cells displayed enhanced migration and invasion capabilities. Interestingly, we found that the 5FU drug-resistance gene signature is positively associated with the mesenchymal signature in CRC samples, and that ABCB1 and ZEB2 co-expressed at high levels could predict poor outcomes in CRC patients. Overall, the 5FU long-term drug-resistance model established here induced various cellular events, and highlighted the importance of further efforts to identify promising targets involved in more than one cellular event to successfully overcome drug-resistance.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Apoptose , Autofagia , Caderinas/genética , Linhagem Celular Tumoral , Proliferação de Células , Claudina-3 , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citotoxinas , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Fluoruracila/farmacologia , Humanos , Oxaliplatina/farmacologia , RNA Mensageiro , Timidilato Sintase , Vimentina
19.
Parasitol Res ; 107(5): 1151-62, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20668879

RESUMO

The present work reports the isolation, biochemical characterization, and subcellular location of serine proteases from aqueous, detergent soluble, and culture supernatant of Leishmania chagasi promastigote extracts, respectively, LCSII, LCSI, and LCSIII. The active enzyme molecular masses of LCSII were about 105, 66, and 60 kDa; of LCSI, 60 and 58 kDa; and of LCSIII, approximately 76 and 68 kDa. Optimal pH for the enzymes was 7.0 for LCSI and LCSIII and 8.5 for LCSII, and the optimal temperature for all enzymes was 37°C, using α-N-ρ-tosyl-L: -arginine methyl ester as substrate. Assay of thermal stability indicated that LCSIII is the more stable enzyme. Hemoglobin, bovine serum albumin, and ovalbumin were hydrolyzed by LCSII and LCSI but not by LCSIII. Inhibition studies suggested that enzymes belong to the serine protease class modulated by divalent cations. Rabbit antiserum against 56-kDa serine protease of Leishmania amazonensis identified proteins in all extracts of L. chagasi. Furthermore, immunocytochemistry demonstrated that serine proteases are located in flagellar pocket region and cytoplasmic vesicles of L. chagasi promastigotes. These findings indicate that L. chagasi serine proteases differ from L. amazonensis proteases and all known flagellate proteases, but display some similarities with serine proteases from other Leishmania species, suggesting a conservation of this enzymatic activity in the genus.


Assuntos
Leishmania/enzimologia , Proteínas de Protozoários/metabolismo , Serina Proteases/metabolismo , Animais , Anticorpos Antiprotozoários/imunologia , Cátions Bivalentes/metabolismo , Coenzimas/metabolismo , Estabilidade Enzimática , Hemoglobinas/metabolismo , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência , Peso Molecular , Organelas/enzimologia , Ovalbumina/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/isolamento & purificação , Coelhos , Serina Proteases/química , Serina Proteases/isolamento & purificação , Soroalbumina Bovina/metabolismo , Especificidade por Substrato , Temperatura
20.
Stem Cell Rev Rep ; 16(6): 1266-1279, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067729

RESUMO

Mesenchymal stromal cells (MSCs) were first used as a source for cell therapy in 1995; however, despite their versatility and unambiguous demonstration of efficacy and safety in preclinical/phase I studies, the positive effect of MSCs in human phase III studies did not resemble the success obtained in mouse models of disease. This dissonance highlights the need to more thoroughly study the immunobiology of MSCs to make better use of these cells. Thus, we aimed to study the immunobiology of MSCs by using chip array analysis as a method for general screening to obtain a global picture in our model study and found IFNy and IL-17 signaling as the first two "top canonical pathways" involved in MSCs immunomodulation. The role of IFNy in triggering the immunosuppressive properties of MSCs is well recognized by many groups; however, the role of IL-17 in this process remains uncertain. Interestingly, in contrast to IFNy, which actively improved the MSCs-mediated immunosuppression, IL-17 did not improve directly the MSCs-mediated immunosuppression. Instead, IL-17 signaling induced the migration of MSCs and inflammatory cells, bringing these cell types together and increasing the likelihood of the lymphocytes sensing the immunosuppressive molecules produced by the MSCs. These effects also correlated with high levels of cytokine/chemokine production and metalloprotease activation by MSCs. Importantly, this treatment maintained the MSCs safety profile by not inducing the expression of molecules related to antigen presentation. In this way, our findings highlight the possibility of using IL-17, in combination with IFNy, to prime MSCs for cell therapy to improve their biological properties and thus their therapeutic efficacy. Finally, the use of preactivated MSCs may also minimize variations among MSCs to produce more uniform therapeutic products. In the not-so-distant future, we envisage a portfolio of MSCs activated by different cocktails specifically designed to target and treat specific diseases. Graphical abstract.


Assuntos
Movimento Celular , Terapia de Imunossupressão , Interferon gama/metabolismo , Interleucina-17/metabolismo , Células-Tronco Mesenquimais/metabolismo , Movimento Celular/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Teste de Cultura Mista de Linfócitos , Células-Tronco Mesenquimais/imunologia , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA