Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Genes Dev ; 35(23-24): 1642-1656, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819353

RESUMO

Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.


Assuntos
Neoplasias , Transtornos do Neurodesenvolvimento , Cromatina , Histonas/metabolismo , Humanos , Proteínas de Membrana , Neoplasias/genética , Transtornos do Neurodesenvolvimento/genética , Nucleossomos , Proteínas Proto-Oncogênicas
2.
Genes Dev ; 34(21-22): 1493-1502, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33033055

RESUMO

Catalytic-inactivating mutations within the Drosophila enhancer H3K4 mono-methyltransferase Trr and its mammalian homologs, MLL3/4, cause only minor changes in gene expression compared with whole-gene deletions for these COMPASS members. To identify essential histone methyltransferase-independent functions of Trr, we screened to identify a minimal Trr domain sufficient to rescue Trr-null lethality and demonstrate that this domain binds and stabilizes Utx in vivo. Using the homologous MLL3/MLL4 human sequences, we mapped a short ∼80-amino-acid UTX stabilization domain (USD) that promotes UTX stability in the absence of the rest of MLL3/4. Nuclear UTX stability is enhanced when the USD is fused with the MLL4 HMG-box. Thus, COMPASS-dependent UTX stabilization is an essential noncatalytic function of Trr/MLL3/MLL4, suggesting that stabilizing UTX could be a therapeutic strategy for cancers with MLL3/4 loss-of-function mutations.


Assuntos
Sequência Conservada/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes Letais/genética , Histona-Lisina N-Metiltransferase/genética , Oxirredutases N-Desmetilantes/genética , Animais , Deleção de Genes , Regulação da Expressão Gênica/genética , Células HCT116 , Humanos , Domínios Proteicos , Estabilidade Proteica
3.
EMBO J ; 40(24): e108307, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34786730

RESUMO

Histone chaperones modulate the stability of histones beginning from histone synthesis, through incorporation into DNA, and during recycling during transcription and replication. Following histone removal from DNA, chaperones regulate histone storage and degradation. Here, we demonstrate that UBR7 is a histone H3.1 chaperone that modulates the supply of pre-existing post-nucleosomal histone complexes. We demonstrate that UBR7 binds to post-nucleosomal H3K4me3 and H3K9me3 histones via its UBR box and PHD. UBR7 binds to the non-nucleosomal histone chaperone NASP. In the absence of UBR7, the pool of NASP-bound post-nucleosomal histones accumulate and chromatin is depleted of H3K4me3-modified histones. We propose that the interaction of UBR7 with NASP and histones opposes the histone storage functions of NASP and that UBR7 promotes reincorporation of post-nucleosomal H3 complexes.


Assuntos
Autoantígenos/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Células HEK293 , Células HeLa , Código das Histonas , Histonas/química , Humanos , Nucleossomos/metabolismo , Domínios Proteicos
4.
Mol Cell ; 65(3): 460-475.e6, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157506

RESUMO

The spatiotemporal regulation of gene expression is central for cell-lineage specification during embryonic development and is achieved through the combinatorial action of transcription factors/co-factors and epigenetic states at cis-regulatory elements. Here, we show that in addition to implementing H3K4me3 at promoters of bivalent genes, Mll2 (KMT2B)/COMPASS can also implement H3K4me3 at a subset of non-TSS regulatory elements, a subset of which shares epigenetic signatures of active enhancers. Our mechanistic studies reveal that association of Mll2's CXXC domain with CpG-rich regions plays an instrumental role for chromatin targeting and subsequent implementation of H3K4me3. Although Mll2/COMPASS is required for H3K4me3 implementation on thousands of loci, generation of catalytically mutant MLL2/COMPASS demonstrated that H3K4me3 implemented by this enzyme was essential for expression of a subset of genes, including those functioning in the control of transcriptional programs during embryonic development. Our findings suggest that not all H3K4 trimethylations implemented by MLL2/COMPASS are functionally equivalent.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Células Germinativas/citologia , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Especiação Genética , Células Germinativas/metabolismo , Células HEK293 , Histona-Lisina N-Metiltransferase , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas , Domínios Proteicos
5.
Genes Dev ; 31(17): 1732-1737, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939616

RESUMO

Of the six members of the COMPASS (complex of proteins associated with Set1) family of histone H3 Lys4 (H3K4) methyltransferases identified in mammals, Set1A has been shown to be essential for early embryonic development and the maintenance of embryonic stem cell (ESC) self-renewal. Like its familial relatives, Set1A possesses a catalytic SET domain responsible for histone H3K4 methylation. Whether H3K4 methylation by Set1A/COMPASS is required for ESC maintenance and during differentiation has not yet been addressed. Here, we generated ESCs harboring the deletion of the SET domain of Set1A (Set1AΔSET); surprisingly, the Set1A SET domain is dispensable for ESC proliferation and self-renewal. The removal of the Set1A SET domain does not diminish bulk H3K4 methylation in ESCs; instead, only a subset of genomic loci exhibited reduction in H3K4me3 in Set1AΔSET cells, suggesting a role for Set1A independent of its catalytic domain in ESC self-renewal. However, Set1AΔSET ESCs are unable to undergo normal differentiation, indicating the importance of Set1A-dependent H3K4 methylation during differentiation. Our data also indicate that during differentiation, Set1A but not Mll2 functions as the H3K4 methylase on bivalent genes and is required for their expression, supporting a model for transcriptional switch between Mll2 and Set1A during the self-renewing-to-differentiation transition. Together, our study implicates a critical role for Set1A catalytic methyltransferase activity in regulating ESC differentiation but not self-renewal and suggests the existence of context-specific H3K4 methylation that regulates transcriptional outputs during ESC pluripotency.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Animais , Proliferação de Células/genética , Células-Tronco Embrionárias/enzimologia , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Metilação , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Domínios PR-SET/genética
6.
Genes Dev ; 31(8): 787-801, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28487406

RESUMO

The homeotic (Hox) genes are highly conserved in metazoans, where they are required for various processes in development, and misregulation of their expression is associated with human cancer. In the developing embryo, Hox genes are activated sequentially in time and space according to their genomic position within Hox gene clusters. Accumulating evidence implicates both enhancer elements and noncoding RNAs in controlling this spatiotemporal expression of Hox genes, but disentangling their relative contributions is challenging. Here, we identify two cis-regulatory elements (E1 and E2) functioning as shadow enhancers to regulate the early expression of the HoxA genes. Simultaneous deletion of these shadow enhancers in embryonic stem cells leads to impaired activation of HoxA genes upon differentiation, while knockdown of a long noncoding RNA overlapping E1 has no detectable effect on their expression. Although MLL/COMPASS (complex of proteins associated with Set1) family of histone methyltransferases is known to activate transcription of Hox genes in other contexts, we found that individual inactivation of the MLL1-4/COMPASS family members has little effect on early Hox gene activation. Instead, we demonstrate that SET1A/COMPASS is required for full transcriptional activation of multiple Hox genes but functions independently of the E1 and E2 cis-regulatory elements. Our results reveal multiple regulatory layers for Hox genes to fine-tune transcriptional programs essential for development.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Cromatina/genética , Células-Tronco Embrionárias/citologia , Deleção de Genes , Histona Metiltransferases , Camundongos , Ligação Proteica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ativação Transcricional/genética
7.
Genes Dev ; 31(19): 2003-2014, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089422

RESUMO

Histone H3 Lys4 (H3K4) methylation is a chromatin feature enriched at gene cis-regulatory sequences such as promoters and enhancers. Here we identify an evolutionarily conserved factor, BRWD2/PHIP, which colocalizes with histone H3K4 methylation genome-wide in human cells, mouse embryonic stem cells, and Drosophila Biochemical analysis of BRWD2 demonstrated an association with the Cullin-4-RING ubiquitin E3 ligase-4 (CRL4) complex, nucleosomes, and chromatin remodelers. BRWD2/PHIP binds directly to H3K4 methylation through a previously unidentified chromatin-binding module related to Royal Family Tudor domains, which we named the CryptoTudor domain. Using CRISPR-Cas9 genetic knockouts, we demonstrate that COMPASS H3K4 methyltransferase family members differentially regulate BRWD2/PHIP chromatin occupancy. Finally, we demonstrate that depletion of the single Drosophila homolog dBRWD3 results in altered gene expression and aberrant patterns of histone H3 Lys27 acetylation at enhancers and promoters, suggesting a cross-talk between these chromatin modifications and transcription through the BRWD protein family.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Domínio Tudor , Acetilação , Animais , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Técnicas de Inativação de Genes , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Nat Methods ; 18(3): 303-308, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589837

RESUMO

Current proteomic approaches disassemble and digest nucleosome particles, blurring readouts of the 'histone code'. To preserve nucleosome-level information, we developed Nuc-MS, which displays the landscape of histone variants and their post-translational modifications (PTMs) in a single mass spectrum. Combined with immunoprecipitation, Nuc-MS quantified nucleosome co-occupancy of histone H3.3 with variant H2A.Z (sixfold over bulk) and the co-occurrence of oncogenic H3.3K27M with euchromatic marks (for example, a >15-fold enrichment of dimethylated H3K79me2). Nuc-MS is highly concordant with chromatin immunoprecipitation-sequencing (ChIP-seq) and offers a new readout of nucleosome-level biology.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Linhagem Celular , Imunoprecipitação da Cromatina/métodos , Células HEK293 , Código das Histonas , Humanos , Metilação
9.
Genes Dev ; 29(3): 238-49, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25644600

RESUMO

Changes in the pattern of gene expression play an important role in allowing cancer cells to acquire their hallmark characteristics, while genomic instability enables cells to acquire genetic alterations that promote oncogenesis. Chromatin plays central roles in both transcriptional regulation and the maintenance of genomic stability. Studies by cancer genome consortiums have identified frequent mutations in genes encoding chromatin regulatory factors and histone proteins in human cancer, implicating them as major mediators in the pathogenesis of both hematological malignancies and solid tumors. Here, we review recent advances in our understanding of the role of chromatin in cancer, focusing on transcriptional regulatory complexes, enhancer-associated factors, histone point mutations, and alterations in heterochromatin-interacting factors.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Neoplasias/genética , Animais , Histonas/genética , Histonas/metabolismo , Humanos , Mutação , Neoplasias/fisiopatologia , Elementos Reguladores de Transcrição/genética
10.
Genes Dev ; 28(2): 115-20, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24402317

RESUMO

The stimulation of trimethylation of histone H3 Lys4 (H3K4) by H2B monoubiquitination (H2Bub) has been widely studied, with multiple mechanisms having been proposed for this form of histone cross-talk. Cps35/Swd2 within COMPASS (complex of proteins associated with Set1) is considered to bridge these different processes. However, a truncated form of Set1 (762-Set1) is reported to function in H3K4 trimethylation (H3K4me3) without interacting with Cps35/Swd2, and such cross-talk is attributed to the n-SET domain of Set1 and its interaction with the Cps40/Spp1 subunit of COMPASS. Here, we used biochemical, structural, in vivo, and chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) approaches to demonstrate that Cps40/Spp1 and the n-SET domain of Set1 are required for the stability of Set1 and not the cross-talk. Furthermore, the apparent wild-type levels of H3K4me3 in the 762-Set1 strain are due to the rogue methylase activity of this mutant, resulting in the mislocalization of H3K4me3 from the promoter-proximal regions to the gene bodies and intergenic regions. We also performed detailed screens and identified yeast strains lacking H2Bub but containing intact H2Bub enzymes that have normal levels of H3K4me3, suggesting that monoubiquitination may not directly stimulate COMPASS but rather works in the context of the PAF and Rad6/Bre1 complexes. Our study demonstrates that the monoubiquitination machinery and Cps35/Swd2 function to focus COMPASS's H3K4me3 activity at promoter-proximal regions in a context-dependent manner.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/enzimologia , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Metilação , Monoéster Fosfórico Hidrolases/metabolismo , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Genes Dev ; 26(18): 2063-74, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22987638

RESUMO

Developmental arrest of Blimp1/Prdm1 mutant embryos at around embryonic day 10.5 (E10.5) has been attributed to placental disturbances. Here we investigate Blimp1/Prdm1 requirements in the trophoblast cell lineage. Loss of function disrupts specification of the invasive spiral artery-associated trophoblast giant cells (SpA-TGCs) surrounding maternal blood vessels and severely compromises the ability of the spongiotrophoblast layer to expand appropriately, secondarily causing collapse of the underlying labyrinth layer. Additionally, we identify a population of proliferating Blimp1(+) diploid cells present within the spongiotrophoblast layer. Lineage tracing experiments exploiting a novel Prdm1.Cre-LacZ allele demonstrate that these Blimp1(+) cells give rise to the mature SpA-TGCs, canal TGCs, and glycogen trophoblasts. In sum, the transcriptional repressor Blimp1/Prdm1 is required for terminal differentiation of SpA-TGCs and defines a lineage-restricted progenitor cell population contributing to placental growth and morphogenesis.


Assuntos
Diferenciação Celular , Células Gigantes/citologia , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Placenta/irrigação sanguínea , Placenta/citologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Gravidez , Células-Tronco/metabolismo , Fatores de Transcrição/genética
12.
PLoS Genet ; 11(7): e1005375, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26158850

RESUMO

The neonatal intestine is a very complex and dynamic organ that must rapidly adapt and remodel in response to a barrage of environmental stimuli during the first few postnatal weeks. Recent studies demonstrate that the zinc finger transcriptional repressor Blimp1/Prdm1 plays an essential role governing postnatal reprogramming of intestinal enterocytes during this period. Functional loss results in global changes in gene expression patterns, particularly in genes associated with metabolic function. Here we engineered a knock-in allele expressing an eGFP-tagged fusion protein under control of the endogenous regulatory elements and performed genome wide ChIP-seq analysis to identify direct Blimp1 targets and further elucidate the function of Blimp1 in intestinal development. Comparison with published human and mouse datasets revealed a highly conserved core set of genes including interferon-inducible promoters. Here we show that the interferon-inducible transcriptional activator Irf1 is constitutively expressed throughout fetal and postnatal intestinal epithelium development. ChIP-seq demonstrates closely overlapping Blimp1 and Irf1 peaks at key components of the MHC class I pathway in fetal enterocytes. The onset of MHC class I expression coincides with down-regulated Blimp1 expression during the suckling to weaning transition. Collectively, these experiments strongly suggest that in addition to regulating the enterocyte metabolic switch, Blimp1 functions as a gatekeeper in opposition to Irf1 to prevent premature activation of the MHC class I pathway in villus epithelium to maintain tolerance in the neonatal intestine.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Fator Regulador 1 de Interferon/metabolismo , Mucosa Intestinal/metabolismo , Placenta/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Enterócitos/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Humanos , Fator Regulador 1 de Interferon/genética , Mucosa Intestinal/crescimento & desenvolvimento , Camundongos , Placenta/citologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Gravidez , Regiões Promotoras Genéticas/genética , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/genética
13.
Sci Adv ; 9(16): eadg6593, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083523

RESUMO

The past three decades have yielded a wealth of information regarding the chromatin regulatory mechanisms that control transcription. The "histone code" hypothesis-which posits that distinct combinations of posttranslational histone modifications are "read" by downstream effector proteins to regulate gene expression-has guided chromatin research to uncover fundamental mechanisms relevant to many aspects of biology. However, recent molecular and genetic studies revealed that the function of many histone-modifying enzymes extends independently and beyond their catalytic activities. In this review, we highlight original and recent advances in the understanding of noncatalytic functions of histone modifiers. Many of the histone modifications deposited by these enzymes-previously considered to be required for transcriptional activation-have been demonstrated to be dispensable for gene expression in living organisms. This perspective aims to prompt further examination of these enigmatic chromatin modifications by inspiring studies to define the noncatalytic "epigenetic moonlighting" functions of chromatin-modifying enzymes.


Assuntos
Epigênese Genética , Histonas , Histonas/metabolismo , Cromatina/genética , Processamento de Proteína Pós-Traducional , Código das Histonas
14.
Nat Commun ; 14(1): 4129, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452018

RESUMO

Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.


Assuntos
Ácido Láctico , Retina , Camundongos , Animais , Ácido Láctico/metabolismo , Retina/metabolismo , Regulação da Expressão Gênica , Metabolismo Energético , Glicólise/genética , Morfogênese/genética , Olho/metabolismo , Mamíferos/metabolismo
15.
Sci Adv ; 9(47): eadj1261, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37992162

RESUMO

The biological role of the repetitive DNA sequences in the human genome remains an outstanding question. Recent long-read human genome assemblies have allowed us to identify a function for one of these repetitive regions. We have uncovered a tandem array of conserved primate-specific retrogenes encoding the protein Elongin A3 (ELOA3), a homolog of the RNA polymerase II (RNAPII) elongation factor Elongin A (ELOA). Our genomic analysis shows that the ELOA3 gene cluster is conserved among primates and the number of ELOA3 gene repeats is variable in the human population and across primate species. Moreover, the gene cluster has undergone concerted evolution and homogenization within primates. Our biochemical studies show that ELOA3 functions as a promoter-associated RNAPII pause-release elongation factor with distinct biochemical and functional features from its ancestral homolog, ELOA. We propose that the ELOA3 gene cluster has evolved to fulfil a transcriptional regulatory function unique to the primate lineage that can be targeted to regulate cellular hyperproliferation.


Assuntos
Fatores de Alongamento de Peptídeos , RNA Polimerase II , Animais , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Alongamento de Peptídeos/genética , Primatas/genética , Elonguina/genética , Família Multigênica , Sequências de Repetição em Tandem/genética
16.
J Neurochem ; 121(6): 843-51, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22458599

RESUMO

Purkinje cell protein 4-like 1 (Pcp4l1) is a small neuronal IQ motif protein closely related to the calmodulin-binding protein Pcp4/PEP-19. PEP-19 interacts with calmodulin via its IQ motif to inhibit calmodulin-dependent enzymes and we hypothesized Pcp4l1 would have similar properties. Surprisingly, full-length Pcp4l1 does not interact with calmodulin in yeast two-hybrid or pulldown experiments yet a synthetic peptide constituting only the IQ motif of Pcp4l1 binds calmodulin and inhibits calmodulin-dependent kinase II. A nine-residue glutamic acid-rich sequence in Pcp4l1 confers these unexpected properties. This element lies outside the IQ motif and its deletion or exchange with the homologous region of PEP-19 restores calmodulin binding. Conversion of a single isoleucine (Ile36) within this motif to phenylalanine, the residue present in PEP-19, imparts calmodulin binding onto Pcp4l1. Moreover, only aromatic amino acid substitutions at position 36 in Pcp4l1 allow binding. Thus, despite their sequence similarities PEP-19 and Pcp4l1 have distinct properties with the latter harboring an element that can functionally suppress an IQ motif. We speculate Pcp4l1 may be a latent calmodulin inhibitor regulated by post-translational modification and/or co-factor interactions.


Assuntos
Proteínas de Ligação a Calmodulina/química , Proteínas de Ligação a Calmodulina/metabolismo , Calmodulina/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Western Blotting , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Transfecção , Técnicas do Sistema de Duplo-Híbrido
17.
Sci Adv ; 7(18)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931446

RESUMO

Recent findings indicate that mitochondrial respiration regulates blood endothelial cell proliferation; however, its role in differentiating lymphatic endothelial cells (LECs) is unknown. We hypothesized that mitochondria could work as a sensor of LECs' metabolic specific needs by determining their functional requirements according to their differentiation status and local tissue microenvironment. Accordingly, we conditionally deleted the QPC subunit of mitochondrial complex III in differentiating LECs of mouse embryos. Unexpectedly, mutant mice were devoid of a lymphatic vasculature by mid-gestation, a consequence of the specific down-regulation of main LEC fate regulators, particularly Vegfr3, leading to the loss of LEC fate. Mechanistically, this is a result of reduced H3K4me3 and H3K27ac in the genomic locus of key LEC fate controllers (e.g., Vegfr3 and Prox1). Our findings indicate that by sensing the LEC differentiation status and microenvironmental metabolic conditions, mitochondrial complex III regulates the critical Prox1-Vegfr3 feedback loop and, therefore, LEC fate specification and maintenance.

18.
Nat Genet ; 52(12): 1271-1281, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33257899

RESUMO

Histone-modifying enzymes are implicated in the control of diverse DNA-templated processes including gene expression. Here, we outline historical and current thinking regarding the functions of histone modifications and their associated enzymes. One current viewpoint, based largely on correlative evidence, posits that histone modifications are instructive for transcriptional regulation and represent an epigenetic 'code'. Recent studies have challenged this model and suggest that histone marks previously associated with active genes do not directly cause transcriptional activation. Additionally, many histone-modifying proteins possess non-catalytic functions that overshadow their enzymatic activities. Given that much remains unknown regarding the functions of these proteins, the field should be cautious in interpreting loss-of-function phenotypes and must consider both cellular and developmental context. In this Perspective, we focus on recent progress relating to the catalytic and non-catalytic functions of the Trithorax-COMPASS complexes, Polycomb repressive complexes and Clr4/Suv39 histone-modifying machineries.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica/genética , Código das Histonas/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Animais , Proteínas Cromossômicas não Histona/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metiltransferases , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras , Transcrição Gênica , Ativação Transcricional/genética
19.
Nat Genet ; 52(6): 615-625, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393859

RESUMO

The COMPASS protein family catalyzes histone H3 Lys 4 (H3K4) methylation and its members are essential for regulating gene expression. MLL2/COMPASS methylates H3K4 on many developmental genes and bivalent clusters. To understand MLL2-dependent transcriptional regulation, we performed a CRISPR-based screen with an MLL2-dependent gene as a reporter in mouse embryonic stem cells. We found that MLL2 functions in gene expression by protecting developmental genes from repression via repelling PRC2 and DNA methylation machineries. Accordingly, repression in the absence of MLL2 is relieved by inhibition of PRC2 and DNA methyltransferases. Furthermore, DNA demethylation on such loci leads to reactivation of MLL2-dependent genes not only by removing DNA methylation but also by opening up previously CpG methylated regions for PRC2 recruitment, diluting PRC2 at Polycomb-repressed genes. These findings reveal how the context and function of these three epigenetic modifiers of chromatin can orchestrate transcriptional decisions and demonstrate that prevention of active repression by the context of the enzyme and not H3K4 trimethylation underlies transcriptional regulation on MLL2/COMPASS targets.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina/metabolismo , Metilação , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/fisiologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Transativadores/genética
20.
Mol Cell Biol ; 26(24): 9327-37, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17030622

RESUMO

Cbln1 and the orphan glutamate receptor GluRdelta2 are pre- and postsynaptic components, respectively, of a novel transneuronal signaling pathway regulating synapse structure and function. We show here that Cbln1 is secreted from cerebellar granule cells in complex with a related protein, Cbln3. However, cbln1- and cbln3-null mice have different phenotypes and cbln1 cbln3 double-null mice have deficits identical to those of cbln1 knockout mice. The basis for these discordant phenotypes is that Cbln1 and Cbln3 reciprocally regulate each other's degradation and secretion such that cbln1-null mice lack both Cbln1 and Cbln3, whereas cbln3-null mice lack Cbln3 but have an approximately sixfold increase in Cbln1. Unlike Cbln1, Cbln3 cannot form homomeric complexes and is secreted only when bound to Cbln1. Structural modeling and mutation analysis reveal that, by constituting a steric clash that is masked upon binding Cbln1 in a "hide-and-run" mechanism of endoplasmic reticulum retention, a single arginine confers the unique properties of Cbln3.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Precursores de Proteínas/metabolismo , Precursores de Proteínas/fisiologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Retículo Endoplasmático/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fenótipo , Ligação Proteica , Precursores de Proteínas/deficiência , Precursores de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA