Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(7): 1166-1170, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38877315

RESUMO

The growth of omic data presents evolving challenges in data manipulation, analysis and integration. Addressing these challenges, Bioconductor provides an extensive community-driven biological data analysis platform. Meanwhile, tidy R programming offers a revolutionary data organization and manipulation standard. Here we present the tidyomics software ecosystem, bridging Bioconductor to the tidy R paradigm. This ecosystem aims to streamline omic analysis, ease learning and encourage cross-disciplinary collaborations. We demonstrate the effectiveness of tidyomics by analyzing 7.5 million peripheral blood mononuclear cells from the Human Cell Atlas, spanning six data frameworks and ten analysis tools.


Assuntos
Software , Humanos , Biologia Computacional/métodos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/citologia , Genômica/métodos , Análise de Dados
2.
Bioinformatics ; 40(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39067017

RESUMO

MOTIVATION: Software is vital for the advancement of biology and medicine. Impact evaluations of scientific software have primarily emphasized traditional citation metrics of associated papers, despite these metrics inadequately capturing the dynamic picture of impact and despite challenges with improper citation. RESULTS: To understand how software developers evaluate their tools, we conducted a survey of participants in the Informatics Technology for Cancer Research (ITCR) program funded by the National Cancer Institute (NCI). We found that although developers realize the value of more extensive metric collection, they find a lack of funding and time hindering. We also investigated software among this community for how often infrastructure that supports more nontraditional metrics were implemented and how this impacted rates of papers describing usage of the software. We found that infrastructure such as social media presence, more in-depth documentation, the presence of software health metrics, and clear information on how to contact developers seemed to be associated with increased mention rates. Analysing more diverse metrics can enable developers to better understand user engagement, justify continued funding, identify novel use cases, pinpoint improvement areas, and ultimately amplify their software's impact. Challenges are associated, including distorted or misleading metrics, as well as ethical and security concerns. More attention to nuances involved in capturing impact across the spectrum of biomedical software is needed. For funders and developers, we outline guidance based on experience from our community. By considering how we evaluate software, we can empower developers to create tools that more effectively accelerate biological and medical research progress. AVAILABILITY AND IMPLEMENTATION: More information about the analysis, as well as access to data and code is available at https://github.com/fhdsl/ITCR_Metrics_manuscript_website.


Assuntos
Pesquisa Biomédica , Software , Pesquisa Biomédica/métodos , Humanos , Estados Unidos , Biologia Computacional/métodos
3.
BMC Bioinformatics ; 25(1): 8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172657

RESUMO

BACKGROUND: The increasing volume and complexity of genomic data pose significant challenges for effective data management and reuse. Public genomic data often undergo similar preprocessing across projects, leading to redundant or inconsistent datasets and inefficient use of computing resources. This is especially pertinent for bioinformaticians engaged in multiple projects. Tools have been created to address challenges in managing and accessing curated genomic datasets, however, the practical utility of such tools becomes especially beneficial for users who seek to work with specific types of data or are technically inclined toward a particular programming language. Currently, there exists a gap in the availability of an R-specific solution for efficient data management and versatile data reuse. RESULTS: Here we present ReUseData, an R software tool that overcomes some of the limitations of existing solutions and provides a versatile and reproducible approach to effective data management within R. ReUseData facilitates the transformation of ad hoc scripts for data preprocessing into Common Workflow Language (CWL)-based data recipes, allowing for the reproducible generation of curated data files in their generic formats. The data recipes are standardized and self-contained, enabling them to be easily portable and reproducible across various computing platforms. ReUseData also streamlines the reuse of curated data files and their integration into downstream analysis tools and workflows with different frameworks. CONCLUSIONS: ReUseData provides a reliable and reproducible approach for genomic data management within the R environment to enhance the accessibility and reusability of genomic data. The package is available at Bioconductor ( https://bioconductor.org/packages/ReUseData/ ) with additional information on the project website ( https://rcwl.org/dataRecipes/ ).


Assuntos
Gerenciamento de Dados , Genômica , Software , Linguagens de Programação , Fluxo de Trabalho
4.
Res Sq ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798429

RESUMO

Advancements in sequencing technologies and the development of new data collection methods produce large volumes of biological data. The Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) provides a cloud-based platform for democratizing access to large-scale genomics data and analysis tools. However, utilizing the full capabilities of AnVIL can be challenging for researchers without extensive bioinformatics expertise, especially for executing complex workflows. Here we present the AnVILWorkflow R package, which enables the convenient execution of bioinformatics workflows hosted on AnVIL directly from an R environment. AnVILWorkflowsimplifies the setup of the cloud computing environment, input data formatting, workflow submission, and retrieval of results through intuitive functions. We demonstrate the utility of AnVILWorkflowfor three use cases: bulk RNA-seq analysis with Salmon, metagenomics analysis with bioBakery, and digital pathology image processing with PathML. The key features of AnVILWorkflow include user-friendly browsing of available data and workflows, seamless integration of R and non-R tools within a reproducible analysis pipeline, and accessibility to scalable computing resources without direct management overhead. While some limitations exist around workflow customization, AnVILWorkflowlowers the barrier to taking advantage of AnVIL's resources, especially for exploratory analyses or bulk processing with established workflows. This empowers a broader community of researchers to leverage the latest genomics tools and datasets using familiar R syntax. This package is distributed through the Bioconductor project (https://bioconductor.org/packages/AnVILWorkflow), and the source code is available through GitHub (https://github.com/shbrief/AnVILWorkflow).

5.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826347

RESUMO

The growth of omic data presents evolving challenges in data manipulation, analysis, and integration. Addressing these challenges, Bioconductor1 provides an extensive community-driven biological data analysis platform. Meanwhile, tidy R programming2 offers a revolutionary standard for data organisation and manipulation. Here, we present the tidyomics software ecosystem, bridging Bioconductor to the tidy R paradigm. This ecosystem aims to streamline omic analysis, ease learning, and encourage cross-disciplinary collaborations. We demonstrate the effectiveness of tidyomics by analysing 7.5 million peripheral blood mononuclear cells from the Human Cell Atlas3, spanning six data frameworks and ten analysis tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA