RESUMO
BACKGROUND: Cell phenotype switching is increasingly being recognized in atherosclerosis. However, our understanding of the exact stimuli for such cellular transformations and their significance for human atherosclerosis is still evolving. Intraplaque hemorrhage is thought to be a major contributor to plaque progression in part by stimulating the influx of CD163+ macrophages. Here, we explored the hypothesis that CD163+ macrophages cause plaque progression through the induction of proapoptotic endothelial-to-mesenchymal transition (EndMT) within the fibrous cap. METHODS: Human coronary artery sections from CVPath's autopsy registry were selected for pathological analysis. Athero-prone ApoE-/- and ApoE-/-/CD163-/- mice were used for in vivo studies. Human peripheral blood mononuclear cell-induced macrophages and human aortic endothelial cells were used for in vitro experiments. RESULTS: In 107 lesions with acute coronary plaque rupture, 55% had pathological evidence of intraplaque hemorrhage in nonculprit vessels/lesions. Thinner fibrous cap, greater CD163+ macrophage accumulation, and a larger number of CD31/FSP-1 (fibroblast specific protein-1) double-positive cells and TUNEL (terminal deoxynucleotidyl transferase-dUTP nick end labeling) positive cells in the fibrous cap were observed in nonculprit intraplaque hemorrhage lesions, as well as in culprit rupture sections versus nonculprit fibroatheroma sections. Human aortic endothelial cells cultured with supernatants from hemoglobin/haptoglobin-exposed macrophages showed that increased mesenchymal marker proteins (transgelin and FSP-1) while endothelial markers (VE-cadherin and CD31) were reduced, suggesting EndMT induction. Activation of NF-κB (nuclear factor kappa ß) signaling by proinflammatory cytokines released from CD163+ macrophages directly regulated the expression of Snail, a critical transcription factor during EndMT induction. Western blot analysis for cleaved caspase-3 and microarray analysis of human aortic endothelial cells indicated that apoptosis was stimulated during CD163+ macrophage-induced EndMT. Additionally, CD163 deletion in athero-prone mice suggested that CD163 is required for EndMT and plaque progression. Using single-cell RNA sequencing from human carotid endarterectomy lesions, a population of EndMT was detected, which demonstrated significant upregulation of apoptosis-related genes. CONCLUSIONS: CD163+ macrophages provoke EndMT, which may promote plaque progression through fibrous cap thinning.
Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Macrófagos , Placa Aterosclerótica , Receptores de Superfície Celular , Humanos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Animais , Antígenos CD/metabolismo , Antígenos CD/genética , Macrófagos/metabolismo , Macrófagos/patologia , Placa Aterosclerótica/patologia , Placa Aterosclerótica/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Camundongos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Masculino , Camundongos Knockout para ApoE , Camundongos Endogâmicos C57BL , Apoptose , Feminino , Transição Epitelial-Mesenquimal , Vasos Coronários/patologia , Vasos Coronários/metabolismoRESUMO
The cell signaling molecules nitric oxide (NO) and Ca2+ regulate diverse biological processes through their closely coordinated activities directed by signaling protein complexes. However, it remains unclear how dynamically the multicomponent protein assemblies behave within the signaling complexes upon the interplay between NO and Ca2+ signals. Here we demonstrate that TRPC5 channels activated by the stimulation of G-protein-coupled ATP receptors mediate Ca2+ influx, that triggers NO production from endothelial NO synthase (eNOS), inducing secondary activation of TRPC5 via cysteine S-nitrosylation and eNOS in vascular endothelial cells. Mutations in the caveolin-1-binding domains of TRPC5 disrupt its association with caveolin-1 and impair Ca2+ influx and NO production, suggesting that caveolin-1 serves primarily as the scaffold for TRPC5 and eNOS to assemble into the signal complex. Interestingly, during ATP receptor activation, eNOS is dissociated from caveolin-1 and in turn directly associates with TRPC5, which accumulates at the plasma membrane dependently on Ca2+ influx and calmodulin. This protein reassembly likely results in a relief of eNOS from the inhibitory action of caveolin-1 and an enhanced TRPC5 S-nitrosylation by eNOS localized in the proximity, thereby facilitating the secondary activation of Ca2+ influx and NO production. In isolated rat aorta, vasodilation induced by acetylcholine was significantly suppressed by the TRPC5 inhibitor AC1903. Thus, our study provides evidence that dynamic remodeling of the protein assemblies among TRPC5, eNOS, caveolin-1, and calmodulin determines the ensemble of Ca2+ mobilization and NO production in vascular endothelial cells.
Assuntos
Cálcio , Caveolina 1 , Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Canais de Cátion TRPC , Animais , Humanos , Masculino , Ratos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Caveolina 1/metabolismo , Caveolina 1/genética , Células Endoteliais/metabolismo , Retroalimentação Fisiológica , Células HEK293 , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genéticaRESUMO
BACKGROUND: Polygenic risk scores (PRSs) for coronary artery disease (CAD) potentially improve cardiovascular risk prediction. However, their relationship with histopathologic features of CAD has never been examined systematically. METHODS: From 4327 subjects referred to CVPath by the State of Maryland Office Chief Medical Examiner for sudden death between 1994 and 2015, 2455 cases were randomly selected for genotyping. We generated PRS from 291 known CAD risk loci. Detailed histopathologic examination of the coronary arteries was performed in all subjects. The primary study outcome measurements were histopathologic plaque features determining severity of atherosclerosis, including %stenosis, calcification, thin-cap fibroatheromas, and thrombotic CAD. RESULTS: After exclusion of cases with insufficient DNA sample quality or with missing data, 954 cases (mean age, 48.8±14.7 years; 75.7% men) remained in the final study cohort. Subjects in the highest PRS quintile exhibited more severe atherosclerosis compared with subjects in the lowest quintile, with greater %stenosis (80.3%±27.0% versus 50.4%±38.7%; adjusted P<0.001) and a higher frequency of calcification (69.6% versus 35.8%; adjusted P=0.004) and thin-cap fibroatheroma (26.7% versus 9.5%; adjusted P=0.007). Even after adjustment for traditional CAD risk factors, subjects within the highest PRS quintile had higher odds of severe atherosclerosis (ie, ≥75% stenosis; adjusted odds ratio, 3.77 [95% CI, 2.10-6.78]; P<0.001) and plaque rupture (adjusted odds ratio, 4.05 [95% CI, 2.26-7.24]; P<0.001). Moreover, subjects within the highest quintile had higher odds of CAD-associated cause of death, especially among those aged ≤50 years (adjusted odds ratio, 4.08 [95% CI, 2.01-8.30]; P<0.001). No statistically significant associations were observed with plaque erosion after adjusting for covariates. CONCLUSIONS: This is the first autopsy study investigating associations between PRS and atherosclerosis severity at the histopathologic level in subjects with sudden death. Our pathological analysis suggests PRS correlates with plaque burden and features of advanced atherosclerosis and may be useful as a method for CAD risk stratification, especially in younger subjects.
Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Feminino , Estratificação de Risco Genético , Constrição Patológica , Fatores de Risco , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Morte Súbita , AutopsiaRESUMO
Spontaneous and age-related amyloidosis has been reported in C57BL/6J mice. However, the biochemical characteristics of age-related amyloidosis remain unclear. Herein, the age-related prevalence of amyloidosis, the types of amyloid fibril proteins, and the effects of amyloid deposition were investigated in renal function in C57BL/6J mice. The results obtained revealed a high incidence of amyloidosis in C57BL/6J mice originating from The Jackson Laboratory as well as the deposition of large amounts of amyloid in the glomeruli of aged mice. The amyloid fibril protein was identified as wild-type apolipoprotein A-II (ApoA-II). Induction of amyloid deposition in 40-week-old mice, equivalent to that of spontaneous development in 80-week-old mice, to rule out the effects of aging, revealed subsequent damage to kidney function by amyloid deposits. Furthermore, amyloid deposition in the mesangial region decreased podocyte density, compromised foot processes, and led to the accumulation of fibroblast growth factor 2 in glomeruli. Collectively, these results suggest that ApoA-II deposition is a general pathology in aged C57BL/6J mice and is dependent on supplier colonies. Therefore, the effects of age-related amyloid deposition need to be considered in research on aging in mice.
Assuntos
Amiloide , Amiloidose , Camundongos , Animais , Amiloide/metabolismo , Apolipoproteína A-II/metabolismo , Camundongos Endogâmicos C57BL , Amiloidose/patologia , Rim/patologia , EnvelhecimentoRESUMO
BACKGROUND: Studies in humans and mice using the expression of an X-linked gene or lineage tracing, respectively, have suggested that clones of smooth muscle cells (SMCs) exist in human atherosclerotic lesions but are limited by either spatial resolution or translatability of the model. METHODS: Phenotypic clonality can be detected by X-chromosome inactivation patterns. We investigated whether clones of SMCs exist in unstable human atheroma using RNA in situ hybridization (BaseScope) to identify a naturally occurring 24-nucleotide deletion in the 3'UTR of the X-linked BGN (biglycan) gene, a proteoglycan highly expressed by SMCs. BGN-specific BaseScope probes were designed to target the wild-type or deletion mRNA. Three different coronary artery plaque types (erosion, rupture, and adaptive intimal thickening) were selected from heterozygous females for the deletion BGN. Hybridization of target RNA-specific probes was used to visualize the spatial distribution of mutants. A clonality index was calculated from the percentage of each probe in each region of interest. Spatial transcriptomics were used to identify differentially expressed transcripts within clonal and nonclonal regions. RESULTS: Less than one-half of regions of interest in the intimal plaque were considered clonal with the mean percent regions of interest with clonality higher in the intimal plaque than in the media. This was consistent for all plaque types. The relationship of the dominant clone in the intimal plaque and media showed significant concordance. In comparison with the nonclonal lesions, the regions with SMC clonality had lower expression of genes encoding cell growth suppressors such as CD74, SERF-2 (small EDRK-rich factor 2), CTSB (cathepsin B), and HLA-DPA1 (major histocompatibility complex, class II, DP alpha 1), among others. CONCLUSIONS: Our novel approach to examine clonality suggests atherosclerosis is primarily a disease of polyclonally and to a lesser extent clonally expanded SMCs and may have implications for the development of antiatherosclerotic therapies.
Assuntos
Aterosclerose , Placa Aterosclerótica , Feminino , Humanos , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Aterosclerose/patologia , Placa Aterosclerótica/patologia , Células Clonais/patologia , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , RNARESUMO
BACKGROUND: Neighborhood disadvantage is associated with a higher risk of sudden cardiac death. However, autopsy findings have never been investigated in this context. Here, we sought to explore associations between neighborhood disadvantage and cardiovascular findings at autopsy in cases of sudden death in the State of Maryland. METHODS: State of Maryland investigation reports from 2,278 subjects within the CVPath Sudden Death Registry were screened for street addresses and 9-digit zip codes. Area deprivation index (ADI), used as metric for neighborhood disadvantage, was available for 1,464 subjects; 650 of whom self-identified as Black and 814 as White. The primary study outcome measurements were causes of death and gross and histopathologic findings of the heart. RESULTS: Subjects from most disadvantaged neighborhoods (i.e., ADI ≥ 8; n = 607) died at younger age compared with subjects from less disadvantaged neighborhoods (i.e., ADI ≤ 7; n = 857; 46.07 ± 14.10 vs 47.78 ± 13.86 years; P = 0.02) and were more likely Black or women. They were less likely to die from cardiac causes of death (61.8% vs 67.7%; P = 0.02) and had less severe atherosclerotic plaque features, including plaque burden, calcification, intraplaque hemorrhage, and thin-cap fibroatheromas. In addition, subjects from most disadvantaged neighborhoods had lower frequencies of plaque rupture (18.8% vs 25.1%, P = 0.004). However, these associations were omitted after adjustment for traditional risk factors and race. CONCLUSION: Neighborhood disadvantage did not associate with cause of death or coronary histopathology after adjustment for cardiovascular risk factors and race, implying that social determinants of health other than neighborhood disadvantage play a more prominent role in sudden cardiac death.
Assuntos
Placa Aterosclerótica , Características de Residência , Humanos , Feminino , Autopsia , Fatores de Risco , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Características da Vizinhança , Fatores SocioeconômicosRESUMO
Radiation is associated with tissue damage and increased risk of atherosclerosis, but there are currently no treatments and a very limited mechanistic understanding of how radiation impacts tissue repair mechanisms. We uncovered that radiation significantly delayed temporal resolution programs that were associated with decreased efferocytosis in vivo. Resolvin D1 (RvD1), a known proresolving ligand, promoted swift resolution and restored efferocytosis in sublethally irradiated mice. Irradiated macrophages exhibited several features of senescence, including increased expression of p16INK4A and p21, heightened levels of SA-ß-gal, COX-2, several proinflammatory cytokines/chemokines, and oxidative stress (OS) in vitro, and when transferred to mice, they exacerbated inflammation in vivo. Mechanistically, heightened OS in senescent macrophages led to impairment in their ability to carry out efficient efferocytosis, and treatment with RvD1 reduced OS and improved efferocytosis. Sublethally irradiated Ldlr -/- mice exhibited increased plaque necrosis, p16INK4A cells, and decreased lesional collagen compared with nonirradiated controls, and treatment with RvD1 significantly reduced necrosis and increased lesional collagen. Removal of p16INK4A hematopoietic cells during advanced atherosclerosis with p16-3MR mice reduced plaque necrosis and increased production of key intraplaque-resolving mediators. Our results demonstrate that sublethal radiation drives macrophage senescence and efferocytosis defects and suggest that RvD1 may be a new therapeutic strategy to limit radiation-induced tissue damage.
Assuntos
Aterosclerose/imunologia , Doenças Cardiovasculares/imunologia , Ácidos Docosa-Hexaenoicos/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Macrófagos/imunologia , Lesões por Radiação/imunologia , Cicatrização/efeitos da radiação , Animais , Aterosclerose/genética , Células Cultivadas , Senescência Celular , Ciclo-Oxigenase 2/metabolismo , Genes p16 , Humanos , Inflamação , Camundongos , Camundongos Knockout , RadiaçãoRESUMO
BACKGROUND: Cardiac injury is common in patients who are hospitalized with coronavirus disease 2019 (COVID-19) and portends poorer prognosis. However, the mechanism and the type of myocardial damage associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain uncertain. METHODS: We conducted a systematic pathological analysis of 40 hearts from hospitalized patients dying of COVID-19 in Bergamo, Italy, to determine the pathological mechanisms of cardiac injury. We divided the hearts according to presence or absence of acute myocyte necrosis and then determined the underlying mechanisms of cardiac injury. RESULTS: Of the 40 hearts examined, 14 (35%) had evidence of myocyte necrosis, predominantly of the left ventricle. Compared with subjects without necrosis, subjects with necrosis tended to be female, have chronic kidney disease, and have shorter symptom onset to admission. The incidence of severe coronary artery disease (ie, >75% cross-sectional narrowing) was not significantly different between those with and without necrosis. Three of 14 (21.4%) subjects with myocyte necrosis showed evidence of acute myocardial infarction, defined as ≥1 cm2 area of necrosis, whereas 11 of 14 (78.6%) showed evidence of focal (>20 necrotic myocytes with an area of ≥0.05 mm2 but <1 cm2) myocyte necrosis. Cardiac thrombi were present in 11 of 14 (78.6%) cases with necrosis, with 2 of 14 (14.2%) having epicardial coronary artery thrombi, whereas 9 of 14 (64.3%) had microthrombi in myocardial capillaries, arterioles, and small muscular arteries. We compared cardiac microthrombi from COVID-19-positive autopsy cases to intramyocardial thromboemboli from COVID-19 cases as well as to aspirated thrombi obtained during primary percutaneous coronary intervention from uninfected and COVID-19-infected patients presenting with ST-segment-elevation myocardial infarction. Microthrombi had significantly greater fibrin and terminal complement C5b-9 immunostaining compared with intramyocardial thromboemboli from COVID-19-negative subjects and with aspirated thrombi. There were no significant differences between the constituents of thrombi aspirated from COVID-19-positive and -negative patients with ST-segment-elevation myocardial infarction. CONCLUSIONS: The most common pathological cause of myocyte necrosis was microthrombi. Microthrombi were different in composition from intramyocardial thromboemboli from COVID-19-negative subjects and from coronary thrombi retrieved from COVID-19-positive and -negative patients with ST-segment-elevation myocardial infarction. Tailored antithrombotic strategies may be useful to counteract the cardiac effects of COVID-19 infection.
Assuntos
COVID-19/virologia , Trombose Coronária/etiologia , Infarto do Miocárdio , Miocárdio/patologia , Idoso , COVID-19/patologia , Trombose Coronária/patologia , Trombose Coronária/virologia , Vasos Coronários/patologia , Vasos Coronários/virologia , Feminino , Coração/virologia , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/patologia , Infarto do Miocárdio/virologia , SARS-CoV-2 , Infarto do Miocárdio com Supradesnível do Segmento ST/epidemiologia , Infarto do Miocárdio com Supradesnível do Segmento ST/virologiaRESUMO
The Nakano cataract mouse (NCT) manifests a wavy coat for their first hair as a genetic trait. In this study, we explored the molecular genetic basis of the wavy coat. We revealed by crossing experiments that the wavy coat is controlled by a major gene on chromosome 7 of NCT, homozygosity of which is a prerequisite for developing the wavy coat, and by a gene on chromosome 9 with a minor effect to reinforce the manifestation of the trait. In humans, a polymorphism of the protease, serine 53 (PRSS53) gene on the homologous chromosome is known to be associated with curly scalp hair. We then investigated the Prss53 gene and discovered that NCT has an insertion of an intracisternal A particle element in the first intron of the gene. Nevertheless, the expression of the Prss53 is not altered in the NCT skin both in transcript and protein levels. Subsequently, we created C57BL/6J-Prss53em1 knockout mice and found that these mice manifest vague wavy coats. A portion of backcross and intercross mice between the C57BL/6J-Prss53em1 and NCT manifested intense or vague wavy coats. These findings demonstrate the polygenic nature of the wavy coat of NCT and Prss53 knockout mice and highlight the similarity of the trait to the curly hair of humans associated with the PRSS53 alteration.
Assuntos
Catarata , Genes Modificadores , Serina Proteases/genética , Animais , Catarata/genética , Genes de Partícula A Intracisternal , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Serina/genética , Serina Proteases/metabolismoRESUMO
The BALB.NCT-Cpoxnct is a mutant mouse model for hereditary cataracts. We previously uncovered that the primary cause of the cataracts of BALB.NCT-Cpoxnct is a mutation in the coproporphyrinogen oxidase (Cpox) gene. Because of the mutation, excessive coproporphyrin is accumulated in the BALB.NCT-Cpoxnct lens. In this study, we analyzed the changes in transcriptome and proteins in the lenses of 4- and 12-week-old BALB.NCT-Cpoxnct to further elucidate the molecular etiology of cataracts in this mouse strain. Transcriptome analysis revealed that endoplasmic reticulum (ER) stress was increased in the BALB.NCT-Cpoxnct lens that induced persistent activation of the PERK signaling pathway of the ER stress response. Also, levels of crystallin transcripts and proteins were reduced in the BALB.NCT-Cpoxnct lens. Analysis of proteins disclosed aggregation of crystallins and keratins prior to the manifestation of cataracts in 4-week-old BALB.NCT-Cpoxnct mice. At 12 weeks of age, insoluble crystallins were accumulated in the cataractous BALB.NCT-Cpoxnct lens. Overall, our data suggest the following sequence of events in the BALB.NCT-Cpoxnct lens: accumulated coproporphyrin induces the aggregation of proteins including crystallins. Aggregated proteins increase ER stress that, in turn, leads to the repression of global translation of proteins including crystallins. The decline in the molecular chaperone crystallin aggravates aggregation and insolubilization of proteins. This vicious cycle would eventually lead to cataracts in BALB.NCT-Cpoxnct.
Assuntos
Catarata , Cristalinas , Cristalino , Animais , Catarata/genética , Catarata/metabolismo , Coproporfirinogênio Oxidase/metabolismo , Cristalinas/metabolismo , Estresse do Retículo Endoplasmático , Cristalino/metabolismo , Camundongos , Proteínas/metabolismoRESUMO
PURPOSE OF REVIEW: The importance of cardiovascular disease (CVD) in women has long been underestimated. Therefore, we need to understand the impact of sex differences on CVD. RECENT FINDINGS: Traditional risk factors contribute to coronary artery disease (CAD) differently in women and men. There are female-specific risk factors and comorbid conditions that affect the risk of CAD. Plaque erosion is frequently seen in younger women who smoke, while plaque rupture is common in older women and men who have elevated blood cholesterol. Coronary artery calcification is also different in both sexes. Thus, coronary artery calcification score-based risk stratification in women is challenging. A deeper understanding of the sex differences in the risk factors and plaque morphology of coronary atherosclerosis may lead to improved outcomes of CVD in women.
Assuntos
Doença da Artéria Coronariana , Placa Aterosclerótica , Idoso , Angiografia Coronária , Doença da Artéria Coronariana/epidemiologia , Feminino , Humanos , Masculino , Placa Aterosclerótica/diagnóstico por imagem , Fatores de Risco , Caracteres Sexuais , Fatores SexuaisRESUMO
[Figure: see text].
Assuntos
Apolipoproteína L1/genética , Negro ou Afro-Americano/genética , Doença da Artéria Coronariana/genética , Trombose Coronária/genética , Variação Genética , Placa Aterosclerótica , Adulto , Autopsia , Causas de Morte , Doença da Artéria Coronariana/etnologia , Doença da Artéria Coronariana/mortalidade , Doença da Artéria Coronariana/patologia , Trombose Coronária/etnologia , Trombose Coronária/mortalidade , Trombose Coronária/patologia , Morte Súbita Cardíaca/etnologia , Morte Súbita Cardíaca/patologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Maryland/epidemiologia , Pessoa de Meia-Idade , Necrose , Fenótipo , Sistema de Registros , Medição de Risco , Fatores de Risco , Ruptura EspontâneaRESUMO
BACKGROUND & AIMS: Changes in pancreatic calcium levels affect secretion and might be involved in development of chronic pancreatitis (CP). We investigated the association of CP with the transient receptor potential cation channel subfamily V member 6 gene (TRPV6), which encodes a Ca2+-selective ion channel, in an international cohort of patients and in mice. METHODS: We performed whole-exome DNA sequencing from a patient with idiopathic CP and from his parents, who did not have CP. We validated our findings by sequencing DNA from 300 patients with CP (not associated with alcohol consumption) and 1070 persons from the general population in Japan (control individuals). In replication studies, we sequenced DNA from patients with early-onset CP (20 years or younger) not associated with alcohol consumption from France (n = 470) and Germany (n = 410). We expressed TRPV6 variants in HEK293 cells and measured their activity using Ca2+ imaging assays. CP was induced by repeated injections of cerulein in TRPV6mut/mut mice. RESULTS: We identified the variants c.629C>T (p.A210V) and c.970G>A (p.D324N) in TRPV6 in the index patient. Variants that affected function of the TRPV6 product were found in 13 of 300 patients (4.3%) and 1 of 1070 control individuals (0.1%) from Japan (odds ratio [OR], 48.4; 95% confidence interval [CI], 6.3-371.7; P = 2.4 × 10-8). Twelve of 124 patients (9.7%) with early-onset CP had such variants. In the replication set from Europe, 18 patients with CP (2.0%) carried variants that affected the function of the TRPV6 product compared with 0 control individuals (P = 6.2 × 10-8). Variants that did not affect the function of the TRPV6 product (p.I223T and p.D324N) were overrepresented in Japanese patients vs control individuals (OR, 10.9; 95% CI, 4.5-25.9; P = 7.4 × 10-9 for p.I223T and P = .01 for p.D324N), whereas the p.L299Q was overrepresented in European patients vs control individuals (OR, 3.0; 95% CI, 1.9-4.8; P = 1.2 × 10-5). TRPV6mut/mut mice given cerulein developed more severe pancreatitis than control mice, as shown by increased levels of pancreatic enzymes, histologic alterations, and pancreatic fibrosis. CONCLUSIONS: We found that patients with early-onset CP not associated with alcohol consumption carry variants in TRPV6 that affect the function of its product, perhaps by altering Ca2+ balance in pancreatic cells. TRPV6 regulates Ca2+ homeostasis and pancreatic inflammation.
Assuntos
Idade de Início , Canais de Cálcio/genética , Pancreatite Crônica/genética , Canais de Cátion TRPV/genética , Adolescente , Adulto , Idoso , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Criança , Pré-Escolar , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Mutação INDEL , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Pâncreas/patologia , Pancreatite Crônica/patologia , Polimorfismo de Nucleotídeo Único , Canais de Cátion TRPV/metabolismo , Sequenciamento do Exoma , Adulto JovemRESUMO
BACKGROUND: Mechanical thrombectomy is increasingly being used as an alternative to pharmacologic therapies for the treatment of patients with acute deep venous thrombosis (DVT) and pulmonary embolism (PE) and allows direct histopathologic comparison of thrombi extracted from living patients. We performed histopathologic analysis to thrombi extracted from cases of DVT and PE to gain insights into their relative cellular compositions. METHODS: Thrombus retrieved using a catheter-based thrombectomy system (ClotTriever for lower extremity DVT and FlowTriever for PE) from the 17 patients (7 DVT cases and 10 PE cases) were histologically evaluated. Histological features were used to estimate their age and pathological characteristics. RESULTS: The thrombus in all cases were composed of fibrin, platelets, red blood cells, and acute inflammatory cells. The weights of thrombus obtained from DVT versus PE cases were heavier (DVT 7.2 g (g) (5.6-10.2) vs. PE 4.8 g (3.6-6.8), p = .01). Overall thrombus healing (i.e., thrombus composed of smooth muscle cells, endothelial cells, and proteoglycans) was different between DVT and PE cases. 6/7 (86%) with features of late stage healing were from DVT cases while only three of ten (30%) were from PE cases while PE contained more acute thrombi with 7/10 (70%) stage 2 as compared 1/7 (14%) for DVT (p = .0498). CONCLUSION: This study is the first to directly compare the histology of extracted thrombus in DVT versus PE cases from patients with clinical events. Overall PE cases demonstrated significantly earlier stage thrombus with a larger component of red blood cells.
Assuntos
Embolia Pulmonar , Trombose , Trombose Venosa , Células Endoteliais , Humanos , Embolia Pulmonar/diagnóstico por imagem , Resultado do Tratamento , Trombose Venosa/diagnóstico por imagemRESUMO
PURPOSE: To compare the long-term vascular healing responses of healthy swine iliofemoral arteries treated with a polymer-free paclitaxel-eluting stent (Z-PES, Zilver PTX) or a fluoropolymer-based paclitaxel-eluting stent (FP-PES, Eluvia). MATERIALS AND METHODS: Bilateral iliofemoral arteries in 20 swine were treated with a Z-PES (n = 16) or a FP-PES (n = 24) and were examined histologically at 1, 3, 6, and 12 months. RESULTS: Morphometric analysis revealed larger external and internal elastic lamina, stent expansion, and lumen area in the FP-PES than in the Z-PES at all timepoints. Luminal narrowing was similar in the 2 groups at 1 month; however, greater stenosis was observed in the Z-PES group at 3 months, with significant regression thereafter, resulting in equivalent stenosis at 6 and 12 months. Greater drug effect and less complete vessel healing were found in the FP-PES group at all timepoints, including greater numbers of malapposed struts with excessive fibrin deposition at 1 and 3 months, than in the Z-PES group. Three of 12 FP-PESs from the 6- and 12-month cohorts also showed circumferential medial disruption with peri-strut inflammation, whereas no abnormal findings were observed in contralateral Z-PESs. CONCLUSIONS: Prolonged paclitaxel release with the presence of a permanent polymer may contribute to the differential vascular responses seen for the Z-PES and FP-PES groups, including medial layer disruption and aneurysmal vessel degeneration that was sometimes observed in the FP-PES group. These distinct features should be confirmed by pathology and in vivo imaging of human superficial femoral arteries to determine their clinical significance.
Assuntos
Fármacos Cardiovasculares/administração & dosagem , Stents Farmacológicos , Procedimentos Endovasculares/instrumentação , Artéria Femoral/efeitos dos fármacos , Paclitaxel/administração & dosagem , Polímeros , Animais , Fármacos Cardiovasculares/efeitos adversos , Procedimentos Endovasculares/efeitos adversos , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/patologia , Neointima , Paclitaxel/efeitos adversos , Desenho de Prótese , Suínos , Porco Miniatura , Fatores de Tempo , Remodelação Vascular/efeitos dos fármacos , Cicatrização/efeitos dos fármacosRESUMO
Frequency delta-sigma modulator (FDSM) employing a variable frequency oscillator is a novel replacement of the classical delta-sigma modulators. This is advantageous for application to sensors, because an ADC can be intrinsically integrated with the sensors. We have already proposed to use this technique to various sensors. However, the signal-to-noise ratio was significantly degraded by noise floor, in the previous papers. In this paper, we have investigated the origin of the noise floor in the FDSM microphone sensors as a promising example. It was demonstrated that improving the phase noise of the oscillator can drastically reduce the noise floor. For this reduction we improved the Q-factor of the cavity resonator, and the design of the oscillator circuit. With these improvements, the phase noise, and, hence, the noise floor, were improved by approximately 40 dB. In addition, we obtained an SNR of 57 dB for 114 dBSPL sound input with 96 kHz bandwidth, which corresponds to the dynamic range of 87 dB for maximum 140 dBSPL. A much larger dynamic range of around 120 dB is expected by increasing the sampling rate and decreasing the Al diaphragm thickness. These results also indicate the promise of the FDSM to varieties of physical sensors.
RESUMO
OBJECTIVES: We evaluated the effect of the different carrier systems on early vascular response through histological analysis and scanning electron microscopy using a porcine model. BACKGROUND: Although Synergy™ and Promus PREMIER™ share an identical stent material and drug elution (everolimus), they use different drug carrier systems: biodegradable abluminal coating polymer or durable conformal coating polymer, respectively. However, data regarding the impact of the different coating systems on vessel healing are currently limited. METHODS: Twelve Synergy™ and Promus PREMIER™ were implanted in 12 swine. Histopathological analysis of the stented segments was performed on the 2nd and 14th days after implantation. Morphometric analysis of the inflammation and intimal fibrin content was also performed. RESULTS: On the 2nd day, neointimal thickness, percentage of neointimal area, and inflammatory and intimal fibrin content scores were not significantly different between the two groups. On the 14th day, the inflammatory and intimal fibrin content scores were significantly lower in Synergy™ versus those observed in Promus PREMIER™. In Synergy™, smooth muscle cells were found and the neointimal layers were smooth. In contrast, inflammatory cells were observed surrounding the struts of Promus PREMIER™. CONCLUSIONS: These results demonstrate that termination of reactive inflammation is accelerated after abluminal coating stent versus implantation of conformal coating stent.
Assuntos
Vasos Coronários , Stents Farmacológicos , Inflamação/prevenção & controle , Neointima/imunologia , Stents/efeitos adversos , Enxerto Vascular/instrumentação , Implantes Absorvíveis , Animais , Materiais Revestidos Biocompatíveis/farmacologia , Vasos Coronários/imunologia , Vasos Coronários/cirurgia , Portadores de Fármacos/farmacologia , Everolimo/farmacologia , Inflamação/etiologia , Modelos Anatômicos , Polímeros/farmacologia , SuínosRESUMO
BACKGROUND: TRPC6 is a nonselective cation channel, and mutations of this gene are associated with FSGS. These mutations are associated with TRPC6 current amplitude amplification and/or delay of the channel inactivation (gain-of-function phenotype). However, the mechanism of the gain-of-function in TRPC6 activity has not yet been clearly solved. METHODS: We performed electrophysiologic, biochemical, and biophysical experiments to elucidate the molecular mechanism underlying calmodulin (CaM)-mediated Ca2+-dependent inactivation (CDI) of TRPC6. To address the pathophysiologic contribution of CDI, we assessed the actin filament organization in cultured mouse podocytes. RESULTS: Both lobes of CaM helped induce CDI. Moreover, CaM binding to the TRPC6 CaM-binding domain (CBD) was Ca2+-dependent and exhibited a 1:2 (CaM/CBD) stoichiometry. The TRPC6 coiled-coil assembly, which brought two CBDs into adequate proximity, was essential for CDI. Deletion of the coiled-coil slowed CDI of TRPC6, indicating that the coiled-coil assembly configures both lobes of CaM binding on two CBDs to induce normal CDI. The FSGS-associated TRPC6 mutations within the coiled-coil severely delayed CDI and often increased TRPC6 current amplitudes. In cultured mouse podocytes, FSGS-associated channels and CaM mutations led to sustained Ca2+ elevations and a disorganized cytoskeleton. CONCLUSIONS: The gain-of-function mechanism found in FSGS-causing mutations in TRPC6 can be explained by impairments of the CDI, caused by disruptions of TRPC's coiled-coil assembly which is essential for CaM binding. The resulting excess Ca2+ may contribute to structural damage in the podocytes.
Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Citoesqueleto/ultraestrutura , Glomerulosclerose Segmentar e Focal/genética , Canal de Cátion TRPC6/genética , Actinas/ultraestrutura , Animais , Sítios de Ligação , Calmodulina/genética , Mutação com Ganho de Função , Glomerulosclerose Segmentar e Focal/metabolismo , Células HEK293 , Humanos , Camundongos , Fenótipo , Podócitos , Domínios Proteicos , Canal de Cátion TRPC6/ultraestruturaRESUMO
RATIONALE: Induced pluripotent stem cells (iPSCs) have been generated from patients with various forms of disease, including Danon disease (DD); however, few reports exist regarding disease-specific iPSCs derived from clinically divergent monozygotic twins. OBJECTIVE: We examined the characteristics of iPSCs and iPSC-derived cardiomyocytes (iPSC-CMs) generated from clinically divergent monozygotic female twins with DD. METHODS AND RESULTS: We generated iPSCs derived from T-cells isolated from clinically divergent, 18-year-old female twins with DD harboring a mutation in LAMP2 at the intron 6 splice site (IVS6+1_4delGTGA). Two divergent populations of iPSCs could prepare from each twin despite of their clinical divergence: one with wild-type LAMP2 expression (WT-iPSCs) and a second with mutant LAMP2 expression (MT-iPSCs). The iPSCs were differentiated into iPSC-CMs and then autophagy failure was observed only in MT-iPSC-CMs by electron microscopy, tandem fluorescent-tagged LC3 analysis, and LC3-II western blotting. Under these conditions, X-chromosome inactivation (XCI) was determined by PCR for the (CAG)n repeat in the androgen receptor gene, revealing an extremely skewed XCI pattern with the inactivated paternal wild-type and maternal mutant X-chromosomes in MT-iPSCs and WT-iPSCs, respectively, from each twin. CONCLUSION: Regardless of their clinical differences, we successfully established two sets of iPSC lines that expressed either wild-type or mutant LAMP2 allele from each monozygotic twin with DD, of which only the populations expressing mutant LAMP2 showed autophagic failure.
Assuntos
Doença de Depósito de Glicogênio Tipo IIb/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Gêmeos Monozigóticos , Animais , Autofagia , Sequência de Bases , Linhagem Celular , Feminino , Doença de Depósito de Glicogênio Tipo IIb/genética , Doença de Depósito de Glicogênio Tipo IIb/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inativação do Cromossomo X/genéticaRESUMO
Voltage-dependent Ca2+ channels (VDCCs) mediate neurotransmitter release controlled by presynaptic proteins such as the scaffolding proteins Rab3-interacting molecules (RIMs). RIMs confer sustained activity and anchoring of synaptic vesicles to the VDCCs. Multiple sites on the VDCC α1 and ß subunits have been reported to mediate the RIMs-VDCC interaction, but their significance is unclear. Because alternative splicing of exons 44 and 47 in the P/Q-type VDCC α1 subunit CaV2.1 gene generates major variants of the CaV2.1 C-terminal region, known for associating with presynaptic proteins, we focused here on the protein regions encoded by these two exons. Co-immunoprecipitation experiments indicated that the C-terminal domain (CTD) encoded by CaV2.1 exons 40-47 interacts with the α-RIMs, RIM1α and RIM2α, and this interaction was abolished by alternative splicing that deletes the protein regions encoded by exons 44 and 47. Electrophysiological characterization of VDCC currents revealed that the suppressive effect of RIM2α on voltage-dependent inactivation (VDI) was stronger than that of RIM1α for the CaV2.1 variant containing the region encoded by exons 44 and 47. Importantly, in the CaV2.1 variant in which exons 44 and 47 were deleted, strong RIM2α-mediated VDI suppression was attenuated to a level comparable with that of RIM1α-mediated VDI suppression, which was unaffected by the exclusion of exons 44 and 47. Studies of deletion mutants of the exon 47 region identified 17 amino acid residues on the C-terminal side of a polyglutamine stretch as being essential for the potentiated VDI suppression characteristic of RIM2α. These results suggest that the interactions of the CaV2.1 CTD with RIMs enable CaV2.1 proteins to distinguish α-RIM isoforms in VDI suppression of P/Q-type VDCC currents.