Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 30(12): 127177, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32284275

RESUMO

Pholasin is a photoprotein derived from the glowing bivalve mollusk, Pholas dactylus. Even though the chemical structure of the prosthetic group (chromophore) responsible for the light emission character of the mollusk remains unknown, research has shown that the presence of dehydrocoelenterazine (DCL) increased light emission and that the dithiothreitol adduct of DCL was isolated from Pholasin®. To date, our research has been focused on activating apopholasin, the naturally occurring apoprotein of Pholasin®, using DCL. In the current study, the expression of recombinant apopholasin via a baculovirus-silkworm multigene expression system is reported. Additionally, the purification of apopholasin using a Flag®-affinity column, the activation of apopholasin using DCL, and the initiation of its luminescent character through the addition of a peroxidase-hydrogen peroxide mixture are reported. The peroxidase-H2O2-dependent luminescence was observed from the recombinant apopholasin activated with DCL.


Assuntos
Baculoviridae/genética , Bombyx/metabolismo , Luciferina de Vaga-Lumes/metabolismo , Imidazóis/metabolismo , Proteínas Luminescentes/genética , Pirazinas/metabolismo , Proteínas Recombinantes/genética , Animais , Bombyx/genética , Ditiotreitol/química , Regulação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Medições Luminescentes , Proteínas Luminescentes/metabolismo , Moluscos/metabolismo , Peroxidase/metabolismo , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
2.
J Oleo Sci ; 73(6): 857-863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825539

RESUMO

The hybridization of lipids with graphene is expected to produce a promising, novel biomaterial. However, there are limited examples of the covalent introduction of lipid molecules, especially the immobilization of lipid molecules, onto graphene on a substrate. Therefore, we investigated the hybridization of a silane coupling agent having phospholipid moieties with graphene oxide on substrates prepared by photo-oxidation using chlorine dioxide. Three silane coupling agents with different carbon chain lengths (C4, C6, C8) were synthesized and phospholipid molecules were introduced onto graphene on a substrate. Phospholipid-immobilized graphene on a grid for TEM (transmission electron microscope) was used for EM analysis of proteins (glyceraldehyde 3-phosphate dehydrogenase and ß-galactosidase), enabling the observation of sufficient particles compared to the conventional graphene grid.


Assuntos
Grafite , Fosfolipídeos , Silanos , Grafite/química , Fosfolipídeos/química , Silanos/química , beta-Galactosidase/metabolismo , Microscopia Eletrônica de Transmissão , Oxirredução , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química
3.
Sci Rep ; 13(1): 2279, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755111

RESUMO

Functionalization of graphene is one of the most important fundamental technologies in a wide variety of fields including industry and biochemistry. We have successfully achieved a novel oxidative modification of graphene using photoactivated ClO2· as a mild oxidant and confirmed the oxidized graphene grid is storable with its functionality for at least three months under N2 atmosphere. Subsequent chemical functionalization enabled us to develop an epoxidized graphene grid (EG-grid™), which effectively adsorbs protein particles for electron cryomicroscopy (cryoEM) image analysis. The EG-grid dramatically improved the particle density and orientation distribution. The density maps of GroEL and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were reconstructed at 1.99 and 2.16 Å resolution from only 504 and 241 micrographs, respectively. A sample solution of 0.1 mg ml-1 was sufficient to reconstruct a 3.10 Å resolution map of SARS-CoV-2 spike protein from 1163 micrographs. The map resolutions of ß-galactosidase and apoferritin easily reached 1.81 Å and 1.29 Å resolution, respectively, indicating its atomic-resolution imaging capability. Thus, the EG-grid will be an extremely powerful tool for highly efficient high-resolution cryoEM structural analysis of biological macromolecules.


Assuntos
COVID-19 , Grafite , Humanos , SARS-CoV-2 , Proteínas , Microscopia Crioeletrônica/métodos
4.
J Biochem ; 173(2): 115-127, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36413757

RESUMO

The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants associated with the adaptive evolution of the virus is prolonging the global coronavirus disease 2019 (COVID-19) pandemic. The modification of neutralizing antibodies based on structural information is expected to be a useful approach to rapidly combat emerging variants. A dimerized variable domain of heavy chain of heavy chain antibody (VHH) P17 that has highly potent neutralizing activity against SARS-CoV-2 has been reported but the mode of interaction with the epitope remains unclear. Here, we report the X-ray crystal structure of the complex of monomerized P17 bound to the SARS-CoV-2 receptor binding domain (RBD) and investigated the binding activity of P17 toward various variants of concern (VOCs) using kinetics measurements. The structure revealed details of the binding interface and showed that P17 had an appropriate linker length to have an avidity effect and recognize a wide range of RBD orientations. Furthermore, we identified mutations in known VOCs that decrease the binding affinity of P17 and proposed methods for the acquisition of affinity toward the Omicron RBD because Omicron is currently the most predominant VOC. This study provides information for the rational design of effective VHHs for emerging VOCs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Dimerização , Epitopos , Cadeias Pesadas de Imunoglobulinas
5.
Chem Commun (Camb) ; 58(42): 6176-6179, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35474124

RESUMO

We report the visible-light-induced in situ preparation of COCl2 through the oxygenation of chloroform in the presence of chlorine dioxide, which leads to the safe constructions of carbamoyl chlorides with good-to-high yields and wide substrate scopes. In addition, this method can also be applied to the synthesis of various carbonates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA