Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(37): E2451-6, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22908279

RESUMO

Based on previously published hydroponic plant, planktonic bacterial, and soil microbial community research, manufactured nanomaterial (MNM) environmental buildup could profoundly alter soil-based food crop quality and yield. However, thus far, no single study has at once examined the full implications, as no studies have involved growing plants to full maturity in MNM-contaminated field soil. We have done so for soybean, a major global commodity crop, using farm soil amended with two high-production metal oxide MNMs (nano-CeO(2) and -ZnO). The results provide a clear, but unfortunate, view of what could arise over the long term: (i) for nano-ZnO, component metal was taken up and distributed throughout edible plant tissues; (ii) for nano-CeO(2), plant growth and yield diminished, but also (iii) nitrogen fixation--a major ecosystem service of leguminous crops--was shut down at high nano-CeO(2) concentration. Juxtaposed against widespread land application of wastewater treatment biosolids to food crops, these findings forewarn of agriculturally associated human and environmental risks from the accelerating use of MNMs.


Assuntos
Qualidade dos Alimentos , Glycine max/efeitos dos fármacos , Nanoestruturas/toxicidade , Fixação de Nitrogênio/efeitos dos fármacos , Poluentes do Solo/toxicidade , Agricultura , Cério , Cromatografia Gasosa , Fertilidade , Espectrometria de Massas , Microscopia Eletrônica , Nanotecnologia/tendências , Poluentes do Solo/farmacocinética , Glycine max/crescimento & desenvolvimento , Espectroscopia por Absorção de Raios X , Óxido de Zinco
2.
Sci Total Environ ; 579: 1756-1768, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27939199

RESUMO

With increasing use, manufactured nanomaterials (MNMs) may enter soils and impact agriculture. Herein, soybean (Glycine max) was grown in soil amended with either nano-CeO2 (0.1, 0.5, or 1.0gkg-1 soil) or nano-ZnO (0.05, 0.1, or 0.5gkg-1 soil). Leaf chlorosis, necrosis, and photosystem II (PSII) quantum efficiency were monitored during plant growth. Seed protein and protein carbonyl, plus leaf chlorophyll, reactive oxygen species (ROS), lipid peroxidation, and genotoxicity were measured for plants at harvest. Neither PSII quantum efficiency, seed protein, nor protein carbonyl indicated negative MNM effects. However, increased ROS, lipid peroxidation, and visible damage, along with decreased total chlorophyll concentrations, were observed for soybean leaves in the nano-CeO2 treatments. These effects correlated to aboveground leaf, pod, and stem production, and to root nodule N2 fixation potential. Soybeans grown in soil amended with nano-ZnO maintained growth, yield, and N2 fixation potential similarly to the controls, without increased leaf ROS or lipid peroxidation. Leaf damage was observed for the nano-ZnO treatments, and genotoxicity appeared for the highest nano-ZnO treatment, but only for one plant. Total chlorophyll concentrations decreased with increasing leaf Zn concentration, which was attributable to zinc complexes-not nano-ZnO-in the leaves. Overall, nano-ZnO and nano-CeO2 amended to soils differentially triggered aboveground soybean leaf stress and damage. However, the consequences of leaf stress and damage to N2 fixation, plant growth, and yield were only observed for nano-CeO2.


Assuntos
Cério/toxicidade , Glycine max/fisiologia , Nanoestruturas/toxicidade , Poluentes do Solo/toxicidade , Óxido de Zinco/toxicidade , Clorofila/metabolismo , Peroxidação de Lipídeos , Folhas de Planta , Raízes de Plantas , Espécies Reativas de Oxigênio/metabolismo , Solo , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA