Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328475

RESUMO

In the current paper, a new hybrid nanofluid based on graphene oxide sheets and silicon nanoparticles is proposed for thermal applications. GO sheets and Si nanoparticles with different mixture ratios are dispersed in distilled water. Dynamic viscosity is measured at temperatures within the range 20-50 °C and the values are compared to the results available in the literature. The results indicated that the viscosity increases with increasing the mixture ratio of graphene oxide. A new correlation for the dynamic viscosity based on the experimental findings is proposed. Finally, the criteria for the performance of new hybrid nanofluid for thermal applications are analyzed.


Assuntos
Grafite , Nanopartículas , Silício , Água
2.
Beilstein J Nanotechnol ; 10: 9-21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680275

RESUMO

Zn/F co-doped SnO2 nanoparticles with a mean diameter of less than 15 nm and a narrow size distribution were synthesized by a one-step laser pyrolysis technique using a reactive mixture containing tetramethyltin (SnMe4) and diethylzinc (ZnEt2) vapors, diluted Ar, O2 and SF6. Their structural, morphological, optical and electrical properties are reported in this work. The X-ray diffraction (XRD) analysis shows that the nanoparticles possess a tetragonal SnO2 crystalline structure. The main diffraction patterns of stannous fluoride (SnF2) were also identified and a reduction in intensity with increasing Zn percentage was evidenced. For the elemental composition estimation, energy dispersion X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) measurements were performed. In general, both analyses showed that the Zn percentage increases with increasing ZnEt2 flow, accompanied at the same time by a decrease in the amount of F in the nanopowders when the same SF6 flow was employed. The Raman spectra of the nanoparticles show the influence of both Zn and F content and crystallite size. The fluorine presence is due to the catalytic partial decomposition of the SF6 laser energy transfer agent. In direct correlation with the increase in the Zn doping level, the bandgap of co-doped nanoparticles shifts to lower energy (from 3.55 to 2.88 eV for the highest Zn dopant concentration).

3.
J Biomed Nanotechnol ; 9(9): 1556-69, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23980503

RESUMO

Magnetic nanoparticles have emerged as important players in current research in modern medicine since they can be used in medicine for diagnosis and/or therapeutic treatment of diseases. Among many therapeutic applications of iron-based nanoparticles, drug delivery and photothermal therapy are of particular interest. At cellular level their uptake has been studied and the mechanism by which nanoparticles enter into the cell has important implication not only for their fate but also for their impact on the biological systems. We present here a dynamic investigation of interaction of biocompatible iron oxide nanoparticles coated with L-3,4-dihydroxyphenylalanine and labeled with tetra-methylrhodamine-5/6-isothiocyanate with lung epithelial cells. Our data show that after macropinocytosis-mediated internalization, nanoparticles in form of vesicles approach the nucleus and converge in the more acidic compartments of the cells in a microtubule-dependent manner. During progression the nanoparticles aggregate. Finally, we have demonstrated that a converging laser radiation on the cells, causes the increase in the local temperature and thus damages the cells, suggesting that these nanoparticles may be applied for photothermal therapy studies.


Assuntos
Células Epiteliais/química , Células Epiteliais/efeitos dos fármacos , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/química , Frações Subcelulares/química , Frações Subcelulares/efeitos dos fármacos , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Células Cultivadas , Relação Dose-Resposta a Droga , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Humanos , Teste de Materiais , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA