Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066054

RESUMO

Inkjet printing of magnetic materials has increased in recent years, as it has the potential to improve research in smart, functional materials. Magnetostriction is an inherent property of magnetic materials which allows strain or magnetic fields to be detected. This makes it very attractive for sensors in the area of structural health monitoring by detecting internal strains in carbon fibre-reinforced polymer (CFRP) composite. Inkjet printing offers design flexibility for these sensors to influence the magnetic response to the strain. This allows the sensor to be tailored to suit the location of defects in the CFRP. This research has looked into the viability of printable soft magnetic materials for structural health monitoring (SHM) of CFRP. Magnetite and nickel ink dispersions were selected to print using the JetLab 4 drop-on-demand technique. The printability of both inks was tested by selecting substrate, viscosity and solvent evaporation. Clogging was found to be an issue for both ink dispersions. Sonicating and adjusting the jetting parameters helped in distributing the nanoparticles. We found that magnetite nanoparticles were ideal as a sensor as there is more than double increase in saturation magnetisation by 49 Am2/kg and more than quadruple reduction of coercive field of 5.34 kA/m than nickel. The coil design was found to be the most sensitive to the field as a function of strain, where the gradient was around 80% higher than other sensor designs. Additive layering of 10, 20 and 30 layers of a magnetite square patch was investigated, and it was found that the 20-layered magnetite print had an improved field response to strain while maintaining excellent print resolution. SHM of CFRP was performed by inducing a strain via bending and it was found that the magnetite coil detected a change in field as the strain was applied.

2.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985494

RESUMO

The rapid, single-stage, flame-spheroidisation process, as applied to varying Fe3O4:CaCO3 powder combinations, provides for the rapid production of a mixture of dense and porous ferromagnetic microspheres with homogeneous composition, high levels of interconnected porosity and microsphere size control. This study describes the production of dense (35-80 µm) and highly porous (125-180 µm) Ca2Fe2O5 ferromagnetic microspheres. Correlated backscattered electron imaging and mineral liberation analysis investigations provide insight into the microsphere formation mechanisms, as a function of Fe3O4/porogen mass ratios and gas flow settings. Optimised conditions for the processing of highly homogeneous Ca2Fe2O5 porous and dense microspheres are identified. Induction heating studies of the materials produced delivered a controlled temperature increase to 43.7 °C, indicating that these flame-spheroidised Ca2Fe2O5 ferromagnetic microspheres could be highly promising candidates for magnetic induced hyperthermia and other biomedical applications.

3.
Sensors (Basel) ; 20(3)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012893

RESUMO

Carbon Fibre Reinforced Polymer composite (CFRP) is widely used in the aerospace industry, but is prone to delamination, which is a major causes of failure. Structural Health Monitoring (SHM) systems need to be developed to determine the damage occurring within it. Our motivation is to design cost-effective new sensors and a data acquisition system for magnetostrictive structural health monitoring of aerospace composites using a simple RLC circuit. The developed system is tested on magnetostrictive FeSiB and CoSiB actuator ribbons using a bending rig. Our results show detectable sensitivity of inductors as low as 0.6 µH for a bending rig radii between 600 to 300 mm (equivalent to 0.8 to 1.7 mStrain), which show a strain sensitivity resolution of 0.01 µStrain (surface area: ~36 mm2). This value is at the detectability limit of our fabricated system. The best resolution (1.86 µStrain) was obtained from a 70-turn copper (~64 µH) wire inductor (surface area: ~400 mm2) that was paired with a FeSiB actuator.

4.
Heliyon ; 10(15): e35047, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39165969

RESUMO

This study harnessed bivariate correlational analysis, multiple linear regression analysis and tree-based regression analysis to examine the relationship between laser process parameters and the final material properties (bulk density, saturation magnetization (M s ), and coercivity (H c )) of Fe-based nano-crystalline alloys fabricated via laser powder bed fusion (LPBF). A dataset comprising of 162 experimental data points served as the foundation for the investigation. Each data point encompassed five independent variables: laser power (P), laser scan speed (v), hatch spacing (h), layer thickness (t), and energy density (E), along with three dependent variables: bulk density, M s , and H c . The bivariate correlational analysis unveiled that bulk density exhibited a significant correlation with P, v, h, and E, whereas M s and H c displayed significant correlations exclusively with v and P, respectively. This divergence may stem from the strong influence of microstructure on magnetic properties, which can be impacted not only by the laser process parameters explored in this study but also by other factors such as oxygen levels within the build chamber. Furthermore, our statistical analysis revealed that bulk density increased with rising P, h, and E, while decreased with higher v. Regarding the magnetic properties, a high M s was achievable through low v, while low H c resulted from high P. It was concluded that P and v were considered as the primary laser process parameters, influencing h and t due to their control over the melt-pool size. The application of multiple linear regression analysis allowed the prediction of the bulk density by using both laser process parameters and energy density. This approach offered a valuable alternative to time-consuming and costly trial-and-error experiments, yielding a low error of less than 1 % between the mean predicted and experimental values. Although a slightly higher error of approximately 6 % was observed for M s , a clear association was established between M s and v, with lower v values corresponding to higher M s values. Additionally, a further comparison was conducted between multiple linear regression and three tree-based regression models to explore the effectiveness of these approaches.

5.
Micromachines (Basel) ; 12(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34683236

RESUMO

Inkjet-printing technology enables the contactless deposition of functional materials such as conductive inks on surfaces, hence reducing contamination and the risk of substrate damage. In printed electronics, inkjet technology offers the significant advantage of controlling the volume of material deposited, and therefore the fine-tuning of the printed geometry, which is crucial for the performance of the final printed electronics. Inkjet printing of functional inks can be used to produce sensors to detect failure of mechanical structures such as carbon fiber reinforced composite (CFRC) components, instead of using attached sensors, which are subject to delamination. Here, silver nanoparticle-based strain sensors were embedded directly in an insulated carbon-fiber laminate by using inkjet printing to achieve an optimized conductive and adhesive geometry, forming a piezoresistive strain sensor. Following the inkjet-printing optimization process, the sensor conductivity and adhesion performance were evaluated. Finally, the sensor was quantified by using a bending rig which applied a pre-determined strain, with the response indicating an accurate sensitivity as the resistance increased with an increased strain. The ability to embed the sensor directly on the CFRC prevents the use of interfacial adhesives which is the main source of failure due to delamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA