Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687056

RESUMO

Carbohydrate-based low-molecular-weight gelators are interesting new materials with many potential applications. These compounds can be designed to include multiple stimuli-responsive functional groups. In this study, we designed and synthesized several chemically responsive bola-glycolipids and dimeric carbohydrate- and diarylethene-based photoswitchable derivatives. The dimeric glycolipids formed stable gels in a variety of solvent systems. The best performing gelators in this series contained decanedioic and dithienylethene (DTE) spacers, which formed gels in eight and nine of the tested solvents, respectively. The two new DTE-containing esters possessed interesting photoswitching properties and DTE derivative 7 was found to have versatile gelation properties in many solvents, including DMSO solutions at low concentrations. The gels formed by these compounds were stable under acidic conditions and tended to hydrolyze under basic conditions. Several gels were used to absorb rhodamine B and Toluidine blue from aqueous solutions. In this study, we demonstrated the rational design of molecular gelators which incorporated photoresponsive and pH responsive functions, leading to the discovery of multiple effective stimuli-responsive gelators.

2.
Langmuir ; 35(45): 14639-14650, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31575116

RESUMO

Carbohydrate-based low-molecular-weight gelators are useful and versatile compounds for the preparation of soft materials. Using N-acetyl-d-glucosamine as the starting material, we synthesized and characterized 15 glycolipids containing an amide with different ester functional groups. These include aliphatic derivatives with varying chain lengths and aromatic derivatives. Most of the hybrid amide-esters have molecular weights less than 500 D. These glycolipids were found to be effective gelators for several organic solvents, water, and aqueous solutions. Two efficient hydrogelators were also obtained at low concentrations. A few representative gels were characterized using optical microscopy, atomic force microscopy, and rheology to obtain information on their morphology and gel stability. Three gelators were also used to encapsulate naproxen sodium and toluidine blue. The sustained release of the drug from the gel to the aqueous phase was monitored by UV-vis spectroscopy. These gelators have structural flexibility that can be stimuli responsive. The esters can be hydrolyzed and several gels were converted to solutions under basic conditions. These rationally designed gelators could be utilized as stimuli-responsive smart materials with controlled release properties.

3.
Gels ; 7(1)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652820

RESUMO

Carbohydrate based low molecular weight gelators have been an intense subject of study over the past decade. The self-assembling systems built from natural products have high significance as biocompatible materials and renewable resources. The versatile structures available from naturally existing monosaccharides have enriched the molecular libraries that can be used for the construction of gelators. The bottom-up strategy in designing low molecular weight gelators (LMWGs) for a variety of applications has been adopted by many researchers. Rational design, along with some serendipitous discoveries, has resulted in multiple classes of molecular gelators. This review covers the literature from 2017-2020 on monosaccharide based gelators, including common hexoses, pentoses, along with some disaccharides and their derivatives. The structure-based design and structure to gelation property relationships are reviewed first, followed by stimuli-responsive gelators. The last section focuses on the applications of the sugar based gelators, including their utilization in environmental remediation, ion sensing, catalysis, drug delivery and 3D-printing. We will also review the available LMWGs and their structure correlations to the desired properties for different applications. This review aims at elucidating the design principles and structural features that are pertinent to various applications and hope to provide certain guidelines for researchers that are working at the interface of chemistry, biochemistry, and materials science.

4.
RSC Adv ; 10(66): 40068-40083, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35520864

RESUMO

Carbohydrate-based low molecular weight gelators (LMWGs) are interesting compounds with a variety of applications. In this research, a library of nineteen carbamate derivatives of N-acetyl-d-glucosamine were synthesized and characterized, and several derivatives were found to be effective LMWGs. They formed gels in pump oils as well as mixtures of water with ethanol or water with DMSO. The structures of the carbamoyl chains played an important role in the gelation properties, short chain aliphatic derivatives and phenyl carbamates formed gels in more solvents than certain aromatic and dimeric carbamates. The phenyl carbamate gelator was also selected for the encapsulation of naproxen sodium, and the drug slowly diffused from the gel to the aqueous phase as indicated by UV-vis spectroscopy. In addition, we also found that the p-methoxyl benzyl carbamate derivative showed interesting stimuli-responsive gelation properties in the presence of metal salts and tetrabutylammonium salts. The gels were characterized using optical microscopy, scanning electron microscopy, rheology and other methods. The self-assembling mechanisms of the gelators were studied using 1H NMR spectroscopy. The preparation, characterization, and molecular assembling properties of these compounds are reported. The results obtained from this study are useful for the design of other LMWGs and the sugar derivatives can be explored for different biological applications. The formation of spontaneous ionic gels can be applicable for a plethora of applications including catalysis and environmental remediation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA