Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 14(1): 156, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631445

RESUMO

Cellular senescence and the senescence-associated secretory phenotype (SASP) are implicated in aging and age-related disease, and SASP-related inflammation is thought to contribute to tissue dysfunction in aging and diseased animals. However, whether and how SASP factors influence the regenerative capacity of tissues remains unclear. Here, using intestinal organoids as a model of tissue regeneration, we show that SASP factors released by senescent fibroblasts deregulate stem cell activity and differentiation and ultimately impair crypt formation. We identify the secreted N-terminal domain of Ptk7 as a key component of the SASP that activates non-canonical Wnt / Ca2+ signaling through FZD7 in intestinal stem cells (ISCs). Changes in cytosolic [Ca2+] elicited by Ptk7 promote nuclear translocation of YAP and induce expression of YAP/TEAD target genes, impairing symmetry breaking and stem cell differentiation. Our study discovers secreted Ptk7 as a factor released by senescent cells and provides insight into the mechanism by which cellular senescence contributes to tissue dysfunction in aging and disease.


Assuntos
Diferenciação Celular , Receptores Proteína Tirosina Quinases , Células-Tronco , Animais , Camundongos , Envelhecimento , Diferenciação Celular/genética , Senescência Celular/genética , Intestinos/citologia , Intestinos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Células-Tronco/metabolismo , Via de Sinalização Wnt , Proteínas de Sinalização YAP
2.
Free Radic Biol Med ; 166: 140-146, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600942

RESUMO

Long dismissed as merely harmful respiratory by-products, Reactive Oxygen Species (ROS) have emerged as critical intracellular messengers during cell growth and differentiation. ROS's signaling roles are particularly prominent within the intestine, whose high regenerative capacity is maintained by Intestinal Stem Cells (ISCs). In this review, we outline roles for ROS in ISCs as revealed by studies using Drosophila and mouse model systems. We focus particularly on recent studies highlighting how ROS ties to metabolic adaptations, which ensure energy supply matches demand during ISC activation and differentiation. We describe how declines in these adaptive mechanisms, through aging or pathology, promote reciprocal changes in ISC metabolism and ROS signaling. These changes ultimately contribute to aberrant ISC function, a loss of tissue homeostasis, and a shortened lifespan.


Assuntos
Proteínas de Drosophila , Células-Tronco , Animais , Diferenciação Celular , Proliferação de Células , Drosophila , Mucosa Intestinal , Intestinos , Camundongos , Espécies Reativas de Oxigênio
3.
Cell Rep ; 33(8): 108423, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238124

RESUMO

In many tissues, stem cell (SC) proliferation is dynamically adjusted to regenerative needs. How SCs adapt their metabolism to meet the demands of proliferation and how changes in such adaptive mechanisms contribute to age-related dysfunction remain poorly understood. Here, we identify mitochondrial Ca2+ uptake as a central coordinator of SC metabolism. Live imaging of genetically encoded metabolite sensors in intestinal SCs (ISCs) of Drosophila reveals that mitochondrial Ca2+ uptake transiently adapts electron transport chain flux to match energetic demand upon proliferative activation. This tight metabolic adaptation is lost in ISCs of old flies, as declines in mitochondrial Ca2+ uptake promote a "Warburg-like" metabolic reprogramming toward aerobic glycolysis. This switch mimics metabolic reprogramming by the oncogene RasV12 and enhances ISC hyperplasia. Our data identify a critical mechanism for metabolic adaptation of tissue SCs and reveal how its decline sets aging SCs on a metabolic trajectory reminiscent of that seen upon oncogenic transformation.


Assuntos
Proteínas de Drosophila/metabolismo , Hiperplasia/fisiopatologia , Intestinos/fisiologia , Células-Tronco/metabolismo , Envelhecimento , Animais , Senescência Celular , Drosophila melanogaster , Intestinos/citologia
4.
Front Aging Neurosci ; 11: 310, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798441

RESUMO

The importance of diverse lifestyle factors in sustaining cognition during aging and delaying the onset of decline in Alzheimer's disease and related dementias cannot be overstated. We explored the influence of cognitive, social, and physical lifestyle factors on resting-state lagged linear connectivity (LLC) in high-density electroencephalography (EEG) in adults, ages 35-75 years. Diverse lifestyle factors build cognitive reserve (CR), protecting cognition in the presence of physical brain decline. Differences in LLC were examined between high- and low-CR groups formed using cognitive, social, and exercise lifestyle factors. LLC is a measure of lagged coherence that excludes zero phase contributions and limits the effects of volume conduction on connectivity estimates. Significant differences in LLC were identified for cognitive and social factors, but not exercise. Participants high in social CR possessed greater local and long-range connectivity in theta and low alpha for eyes-open and eyes-closed recording conditions. In contrast, participants high in cognitive CR exhibited greater eyes-closed long-range connectivity between the occipital lobe and other cortical regions in low alpha. Greater eyes-closed local LLC in delta was also present in men high in cognitive CR. Cognitive factor scores correlated with sustained attention, whereas social factors scores correlated with spatial working memory. Gender was a significant covariate in our analyses, with women displaying higher local and long-range LLC in low beta. Our findings support distinct relationships between CR and LLC, as well as CR and cognitive function for cognitive and social subcomponents. These patterns reflect the importance of diverse lifestyle factors in building CR.

5.
Cell Rep ; 23(2): 470-484, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642005

RESUMO

Tumor necrosis factor (TNF) is an inflammatory cytokine that can signal cell survival or cell death. The mechanisms that switch between these distinct outcomes remain poorly defined. Here, we show that the E3 ubiquitin ligase Mind Bomb-2 (MIB2) regulates TNF-induced cell death by inactivating RIPK1 via inhibitory ubiquitylation. Although depletion of MIB2 has little effect on NF-κB activation, it sensitizes cells to RIPK1- and caspase-8-dependent cell death. We find that MIB2 represses the cytotoxic potential of RIPK1 by ubiquitylating lysine residues in the C-terminal portion of RIPK1. Our data suggest that ubiquitin conjugation of RIPK1 interferes with RIPK1 oligomerization and RIPK1-FADD association. Disruption of MIB2-mediated ubiquitylation, either by mutation of MIB2's E3 activity or RIPK1's ubiquitin-acceptor lysines, sensitizes cells to RIPK1-mediated cell death. Together, our findings demonstrate that Mind Bomb E3 ubiquitin ligases can function as additional checkpoint of cytokine-induced cell death, selectively protecting cells from the cytotoxic effects of TNF.


Assuntos
Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Multimerização Proteica/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos
6.
Cell Host Microbe ; 20(3): 283-295, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27631699

RESUMO

Pattern recognition receptors are activated following infection and trigger transcriptional programs important for host defense. Tight regulation of NF-κB activation is critical to avoid detrimental and misbalanced responses. We describe Pickle, a Drosophila nuclear IκB that integrates signaling inputs from both the Imd and Toll pathways by skewing the transcriptional output of the NF-κB dimer repertoire. Pickle interacts with the NF-κB protein Relish and the histone deacetylase dHDAC1, selectively repressing Relish homodimers while leaving other NF-κB dimer combinations unscathed. Pickle's ability to selectively inhibit Relish homodimer activity contributes to proper host immunity and organismal health. Although loss of pickle results in hyper-induction of Relish target genes and improved host resistance to pathogenic bacteria in the short term, chronic inactivation of pickle causes loss of immune tolerance and shortened lifespan. Pickle therefore allows balanced immune responses that protect from pathogenic microbes while permitting the establishment of beneficial commensal host-microbe relationships.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Proteínas I-kappa B/metabolismo , Imunidade Inata , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Animais , Drosophila/imunologia , Proteínas de Drosophila/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas
7.
Nat Commun ; 7: 10972, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26960254

RESUMO

Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-ß to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events.


Assuntos
Caspase 8/metabolismo , Caspases/metabolismo , Proteínas de Drosophila/metabolismo , Miosinas/metabolismo , Animais , Linhagem Celular Tumoral , Drosophila melanogaster , Citometria de Fluxo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Imunoprecipitação , Camundongos , Microscopia Confocal , Miosina VIIa , Células NIH 3T3 , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Asas de Animais
8.
Curr Top Dev Biol ; 114: 209-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431569

RESUMO

Cell death and inflammation are ancient processes of fundamental biological importance in both normal physiology and human disease pathologies. The recent observation that apoptosis regulatory components have dual roles in cell death and inflammation suggests that these proteins function, not primarily to kill, but to coordinate tissue repair and remodeling. This perspective unifies cell death components as positive regulators of tissue repair that replaces malfunctioning or damaged tissues and enhances the resilience of epithelia to insult. It is now recognized that cells that die by apoptosis do not do so silently, but release a variety of paracrine signals to communicate with their cellular environment to ensure tissue regeneration, and wound healing. Moreover, inflammatory signaling pathways, such as those emanating from the TNF receptor or Toll-related receptors, take part in cell competition to eliminate developmentally aberrant clones. Ubiquitylation has emerged as crucial mediator of signal transduction in cell death and inflammation. Here, we focus on recent advances on ubiquitin-mediated regulation of cell death and inflammation, and how this is used to regulate the defense of homeostasis.


Assuntos
Homeostase , Inflamação/patologia , Transdução de Sinais , Ubiquitina/metabolismo , Animais , Caspases/metabolismo , Morte Celular , Humanos , Inflamação/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fatores de Necrose Tumoral/metabolismo
9.
Curr Biol ; 24(12): 1361-1368, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24909327

RESUMO

NFAT-dependent gene expression is essential for the development and function of the nervous, immune, and cardiovascular systems and kidney, bone, and skeletal muscle. Most NFAT protein resides in the cytoplasm because of extensive phosphorylation, which masks a nuclear localization sequence. Dephosphorylation by the Ca(2+)-calmodulin-activated protein phosphatase calcineurin triggers NFAT migration into the nucleus. In some cell types, NFAT can be activated by Ca(2+) nanodomains near open store-operated Orai1 and voltage-gated Ca(2+) channels in the plasma membrane. How local Ca(2+) near Orai1 is detected and whether other Orai channels utilize a similar mechanism remain unclear. Here, we report that the paralog Orai3 fails to activate NFAT. Orai1 is effective in activating gene expression via Ca(2+) nanodomains because it participates in a membrane-delimited signaling complex that forms after store depletion and brings calcineurin, via the scaffolding protein AKAP79, to calmodulin tethered to Orai1. By contrast, Orai3 interacts less well with AKAP79 after store depletion, rendering it ineffective in activating NFAT. A channel chimera of Orai3 with the N terminus of Orai1 was able to couple local Ca(2+) entry to NFAT activation, identifying the N-terminal domain of Orai1 as central to Ca(2+) nanodomain-transcription coupling. The formation of a store-dependent signaling complex at the plasma membrane provides for selective activation of a fundamental downstream response by Orai1.


Assuntos
Canais de Cálcio/genética , Sinalização do Cálcio , Expressão Gênica , Fatores de Transcrição NFATC/genética , Animais , Canais de Cálcio/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Fatores de Transcrição NFATC/metabolismo , Proteína ORAI1 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA