Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 148(1): 234-243, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33338536

RESUMO

BACKGROUND: Urbanization is linked with an increased burden of asthma and atopic traits. A putative mechanism is insufficient exposure to beneficial microbes early in life, leading to immune dysregulation, as was previously shown for indoor microbial exposures. OBJECTIVE: Our aim was to investigate whether urbanization is associated with the microbiota composition in the infants' body and early immune function, and whether these contribute to the later risk of asthma and atopic traits. METHODS: We studied the prospective Copenhagen Prospective Studies on Asthma in Childhood 20102010 mother-child cohort of 700 children growing up in areas with different degrees of urbanization. During their first year of life, airway and gut microbiotas, as well as immune marker concentrations, were defined. When the children were 6 years of age, asthma and atopic traits were diagnosed by pediatricians. RESULTS: In adjusted analyses, the risk of asthma and aeroallergen sensitization were increased in urban infants. The composition of especially airway but also gut microbiotas differed between urban and rural infants. The living environment-related structure of the airway microbiota was already associated with immune mediator concentrations at 1 month of age. An urbanized structure of the airway and gut microbiotas was associated with an increased risk of asthma coherently during multiple time points and also with the risks of eczema and sensitization. CONCLUSION: Our findings suggest that urbanization-related changes in the infant microbiota may elevate the risk of asthma and atopic traits, probably via cross talk with the developing immune system. The airways may facilitate this effect, as they are open for colonization by environmental airborne microbes and serve as an immune interface.


Assuntos
Dermatite Atópica/imunologia , Microbiota/imunologia , Alérgenos/imunologia , Asma/imunologia , Criança , Estudos de Coortes , Eczema/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Lactente , Recém-Nascido , Estudos Prospectivos , População Rural , Urbanização
2.
J Allergy Clin Immunol ; 146(6): 1358-1366, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32693091

RESUMO

BACKGROUND: The upper airways present a barrier to inhaled allergens and microbes, which alter immune responses and subsequent risk for diseases, such as allergic rhinitis (AR). OBJECTIVE: We tested the hypothesis that early-life microbial exposures leave a lasting signature in DNA methylation that ultimately influences the development of AR in children. METHODS: We studied upper airway microbiota at 1 week, 1 month, and 3 months of life, and measured DNA methylation and gene expression profiles in upper airway mucosal cells and assessed AR at age 6 years in children in the Copenhagen Prospective Studies on Asthma in Childhood birth cohort. RESULTS: We identified 956 AR-associated differentially methylated CpGs in upper airway mucosal cells at age 6 years, 792 of which formed 3 modules of correlated differentially methylated CpGs. The eigenvector of 1 module was correlated with the expression of genes enriched for lysosome and bacterial invasion of epithelial cell pathways. Early-life microbial diversity was lower at 1 week (richness P = .0079) in children with AR at age 6 years, and reduced diversity at 1 week was also correlated with the same module's eigenvector (ρ = -0.25; P = 3.3 × 10-5). We show that the effect of microbiota richness at 1 week on risk for AR at age 6 years was mediated in part by the epigenetic signature of this module. CONCLUSIONS: Our results suggest that upper airway microbial composition in infancy contributes to the development of AR during childhood, and this trajectory is mediated, at least in part, through altered DNA methylation patterns in upper airway mucosal cells.


Assuntos
Metilação de DNA , Epigênese Genética , Microbiota , Nariz/microbiologia , Rinite Alérgica , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Prospectivos , Rinite Alérgica/metabolismo , Rinite Alérgica/microbiologia
3.
J Nutr ; 148(3): 336-347, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462356

RESUMO

Background: Nutrient fortification of human milk is often required to secure adequate growth and organ development for very preterm infants. There is concern that formula-based fortifiers (FFs) induce intestinal dysfunction, feeding intolerance, and necrotizing enterocolitis (NEC). Bovine colostrum (BC) may be an alternative nutrient fortifier, considering its high content of protein and milk bioactive factors. Objective: We investigated whether BC was superior to an FF product based on processed bovine milk and vegetable oil to fortify donor human milk (DHM) for preterm pigs, used as a model for infants. Methods: Sixty preterm pigs from 4 sows (Danish Landrace × Large White × Duroc, birth weight 944 ± 29 g) received decreasing volumes of parenteral nutrition (96-72 mL â‹… kg-1 â‹… d-1) and increasing volumes of enteral nutrition (24-132 mL â‹… kg-1 â‹… d-1) for 8 d. Pigs were fed donor porcine milk (DPM) and DHM with or without FF or BC fortification (+4.6 g protein â‹… kg-1 â‹… d-1). Results: DPM-fed pigs showed higher growth (10-fold), protein synthesis (+15-30%), villus heights, lactase and peptidase activities (+30%), and reduced intestinal cytokines (-50%) relative to DHM pigs (all P < 0.05). Fortification increased protein synthesis (+20-30%), but with higher weight gain and lower urea and cortisol concentrations for DHM+BC compared with DHM+FF pigs (2- to 3-fold differences, all P ≤ 0.06). DHM+FF pigs showed more diarrhea and reduced lactase and peptidase activities, hexose uptake, and villus heights relative to DHM+BC or DHM pigs (30-90% differences, P < 0.05). Fortification did not affect NEC incidence but DHM+BC pigs had lower colonic interleukin (IL)-6 and IL-8 concentrations relative to the remaining pigs (-30%, P = 0.06). DHM+FF pigs had higher stomach bacterial load than did DHM, and higher bacterial density along intestinal villi than did DHM and DHM+BC pigs (2- to 3-fold, P < 0.05). Conclusions: The FF product investigated in this study reduced growth, intestinal function, and protein utilization in DHM-fed preterm pigs, relative to BC as fortifier. The relevance of BC as an alternative nutrient fortifier for preterm infants should be tested.


Assuntos
Colostro , Dieta , Proteínas Alimentares/metabolismo , Alimentos Fortificados , Intestinos/crescimento & desenvolvimento , Leite Humano , Nascimento Prematuro , Animais , Bovinos , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/prevenção & controle , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Interleucinas/metabolismo , Mucosa Intestinal , Intestinos/microbiologia , Masculino , Leite , Nutrientes , Apoio Nutricional , Óleos de Plantas , Gravidez , Biossíntese de Proteínas , Suínos
4.
J Gastroenterol Hepatol ; 33(1): 307-314, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28671712

RESUMO

BACKGROUND AND AIM: Decompensated cirrhosis is characterized by disturbed hemodynamics, immune dysfunction, and high risk of infections. Translocation of viable bacteria and bacterial products from the gut to the blood is considered a key driver in this process. Intestinal decontamination with rifaximin may reduce bacterial translocation (BT) and decrease inflammation. A randomized, placebo-controlled trial investigated the effects of rifaximin on inflammation and BT in decompensated cirrhosis. METHODS: Fifty-four out-patients with cirrhosis and ascites were randomized, mean age 56 years (± 8.4), and model for end-stage liver disease score 12 (± 3.9). Patients received rifaximin 550-mg BD (n = 36) or placebo BD (n = 18). Blood and fecal (n = 15) sampling were conducted at baseline and after 4 weeks. Bacterial DNA in blood was determined by real-time qPCR 16S rRNA gene quantification. Bacterial composition in feces was analyzed by 16S rRNA gene sequencing. RESULTS: Circulating markers of inflammation, including tumor necrosis factor alpha, interleukins 6, 10, and 18, stromal cell-derived factor 1-α, transforming growth factor ß-1, and high sensitivity C-reactive protein, were unaltered by rifaximin treatment. Rifaximin altered abundance of bacterial taxa in blood marginally, only a decrease in Pseudomonadales was observed. In feces, rifaximin decreased bacterial richness, but effect on particular species was not observed. Subgroup analyses on patients with severely disturbed hemodynamics (n = 34) or activated lipopolysaccharide binding protein (n = 37) revealed no effect of rifaximin. CONCLUSION: Four weeks of treatment with rifaximin had no impact on the inflammatory state and only minor effects on BT and intestinal bacterial composition in stable, decompensated cirrhosis (NCT01769040).


Assuntos
Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacologia , Translocação Bacteriana/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/microbiologia , Rifamicinas/administração & dosagem , Rifamicinas/farmacologia , Adulto , Idoso , Biomarcadores/sangue , DNA Bacteriano/sangue , Fezes/microbiologia , Feminino , Hemodinâmica , Humanos , Intestinos/microbiologia , Cirrose Hepática/fisiopatologia , Masculino , Pessoa de Meia-Idade , Rifaximina
5.
Infect Immun ; 81(8): 3009-17, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23753626

RESUMO

Catheter-associated urinary tract infections are biofilm-mediated infections that cause a significant economic and health burden in nosocomial environments. Using a newly developed murine model of this type of infection, we investigated the role of fimbriae in implant-associated urinary tract infections by the Gram-negative bacterium Klebsiella pneumoniae, which is a proficient biofilm former and a commonly isolated nosocomial pathogen. Studies have shown that type 1 and type 3 fimbriae are involved in attachment and biofilm formation in vitro, and these fimbrial types are suspected to be important virulence factors during infection. To test this hypothesis, the virulence of fimbrial mutants was assessed in independent challenges in which mouse bladders were inoculated with the wild type or a fimbrial mutant and in coinfection studies in which the wild type and fimbrial mutants were inoculated together to assess the results of a direct competition in the urinary tract. Using these experiments, we were able to show that both fimbrial types serve to enhance colonization and persistence. Additionally, a double mutant had an additive colonization defect under some conditions, indicating that both fimbrial types have unique roles in the attachment and persistence in the bladder and on the implant itself. All of these mutants were outcompeted by the wild type in coinfection experiments. Using these methods, we are able to show that type 1 and type 3 fimbriae are important colonization factors in the murine urinary tract when an implanted silicone tube is present.


Assuntos
Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/microbiologia , Fímbrias Bacterianas/fisiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Infecções Urinárias/microbiologia , Animais , Infecções Relacionadas a Cateter/genética , Modelos Animais de Doenças , Feminino , Klebsiella pneumoniae/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Silicones , Infecções Urinárias/genética
6.
ISME J ; 16(4): 997-1003, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34759302

RESUMO

Community assembly processes determine patterns of species distribution and abundance which are central to the ecology of microbiomes. When studying plant root microbiome assembly, it is typical to sample at the whole plant root system scale. However, sampling at these relatively large spatial scales may hinder the observability of intermediate processes. To study the relative importance of these processes, we employed millimetre-scale sampling of the cell elongation zone of individual roots. Both the rhizosphere and rhizoplane microbiomes were examined in fibrous and taproot model systems, represented by wheat and faba bean, respectively. Like others, we found that the plant root microbiome assembly is mainly driven by plant selection. However, based on variability between replicate millimetre-scale samples and comparisons with randomized null models, we infer that either priority effects during early root colonization or variable selection among replicate plant roots also determines root microbiome assembly.


Assuntos
Microbiota , Microbiologia do Solo , Bactérias/genética , Raízes de Plantas , Rizosfera
7.
Clin Microbiol Infect ; 28(4): 588-595, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34500080

RESUMO

OBJECTIVES: To investigate changes in vaginal microbiota during pregnancy, and the association between vaginal dysbiosis and reproductive outcomes. METHODS: A total of 730 (week 24) and 666 (week 36) vaginal samples from 738 unselected pregnant women were studied by microscopy (Nugent score) and characterized by 16S rRNA gene sequencing. A novel continuous vaginal dysbiosis score was developed based on these methods using a supervised partial least squares model. RESULTS: Among women with bacterial vaginosis in week 24 (n = 53), 47% (n = 25) also had bacterial vaginosis in week 36. In contrast, among women without bacterial vaginosis in week 24, only 3% (n = 18) developed bacterial vaginosis in week 36. Vaginal samples dominated by Lactobacillus crispatus (OR 0.35, 95% CI 0.20-0.60) and Lactobacillus iners (OR 0.40, 95% CI 0.23-0.68) in week 24 were significantly more stable by week 36 when compared with other vaginal community state types. Vaginal dysbiosis score at week 24 was associated with a significant increased risk of emergency, but not elective, caesarean section (OR 1.37, 955 CI 1.15-1.64, p < 0.001), suggesting a 37% increased risk per standard deviation increase in vaginal dysbiosis score. CONCLUSIONS: Changes in vaginal microbiota from week 24 to week 36 of pregnancy correlated with bacterial vaginosis status and vaginal community state type. A novel vaginal dysbiosis score was associated with a significantly increased risk of emergency, but not elective, caesarean section. This was not found for bacterial vaginosis or any vaginal community state type and could point to the importance of investigating vaginal dysbiosis as a nuanced continuum instead of crude clusters.


Assuntos
Cesárea , Disbiose , Cesárea/efeitos adversos , Feminino , Humanos , Gravidez , Estudos Prospectivos , RNA Ribossômico 16S/genética , Vagina/microbiologia
8.
Ann Am Thorac Soc ; 19(12): 2031-2043, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904980

RESUMO

Rationale: There is a major unmet need for improving the care of children and adolescents with severe asthma and wheeze. Identifying factors contributing to disease severity may lead to improved diagnostics, biomarkers, or therapies. The airway microbiota may be such a key factor. Objectives: To compare the oropharyngeal airway microbiota of children and adolescents with severe and mild/moderate asthma/wheeze. Methods: Oropharyngeal swab samples from school-age and preschool children in the European U-BIOPRED (Unbiased BIOmarkers in the PREDiction of respiratory disease outcomes) multicenter study of severe asthma, all receiving severity-appropriate treatment, were examined using 16S ribosomal RNA gene sequencing. Bacterial taxa were defined as amplicon sequence variants. Results: We analyzed 241 samples from four cohorts: A) 86 school-age children with severe asthma; B) 39 school-age children with mild/moderate asthma; C) 65 preschool children with severe wheeze; and D) 51 preschool children with mild/moderate wheeze. The most common bacteria were Streptococcus (mean relative abundance, 33.5%), Veillonella (10.3%), Haemophilus (7.0%), Prevotella (5.9%), and Rothia (5.5%). Age group (school-age vs. preschool) was associated with the microbiota in ß-diversity analysis (F = 3.32, P = 0.011) and in a differential abundance analysis (28 significant amplicon sequence variants). Among all children, we found no significant difference in the microbiota between children with severe and mild/moderate asthma/wheeze in univariable ß-diversity analysis (F = 1.99, P = 0.08, N = 241), but a significant difference in a multivariable model (F = 2.66, P = 0.035), including the number of exacerbations in the previous year. Age was also significant when expressed as a microbial maturity score (Spearman Rho, 0.39; P = 4.6 × 10-10); however, this score was not associated with asthma/wheeze severity. Conclusions: There was a modest difference in the oropharyngeal airway microbiota between children with severe and mild/moderate asthma/wheeze across all children but not in individual age groups, and a strong association between the microbiota and age. This suggests the oropharyngeal airway microbiota as an interesting entity in studying asthma severity, but probably without the strength to serve as a biomarker for targeted intervention.


Assuntos
Asma , Microbiota , Humanos , Adolescente , Pré-Escolar , Sons Respiratórios , Microbiota/genética , Asma/microbiologia , Orofaringe/microbiologia , Bactérias/genética
9.
Heliyon ; 7(3): e06513, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33817376

RESUMO

This cohort study aimed to characterize the oral microbiome of children with CLP, from two different age groups, and evaluate the effect of supervised or unsupervised toothbrushing on the microbiome of the cleft over time. Swab samples were collected from the cleft area at three different time points (A; no brushing, B; after 15 days and C; after 30 days) and were analyzed using next-generation sequencing to determine the microbial composition and diversity in these time points. Overall, brushing significantly decreased the abundance of the genera Alloprevotella and Leptotrichia in the two age groups examined, and for Alloprevotella this decrease was more evident for children (2-6 years old). In the preteen group (7-12 years old), a significant relative increase of the genus Rothia was observed after brushing. In this study, the systematic brushing over a period of thirty days also resulted in differences at the intra-individual bacterial richness.

10.
Sci Rep ; 11(1): 3963, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597669

RESUMO

Studying respiratory illness-specific microbial signatures and their interaction with other micro-residents could provide a better understanding of lung microbial ecology. Each respiratory illness has a specific disease etiology, however, so far no study has revealed disease-specific microbial markers. The present study was designed to determine disease-specific microbial features and their interactions with other residents in chronic obstructive pulmonary diseases (stable and exacerbated), sarcoidosis, and interstitial lung diseases. Broncho-alveolar lavage samples (n = 43) were analyzed by SSU rRNA gene sequencing to study the alveolar microbiome in these diseases. A predominance of Proteobacteria followed by Firmicutes, Bacteroidetes, Actinobacteria, and Fusobacteria was observed in all the disease subsets. Shannon diversity was significantly higher in stable COPD when compared to exacerbated chronic obstructive pulmonary disease (ECOPD) (p = 0.0061), and ILD patient samples (p = 0.037). The lung microbiome of the patients with stable COPD was more diverse in comparison to ECOPD and ILD patients (p < 0.001). Lefse analysis identified 40 disease-differentiating microbial features (LDA score (log10) > 4). Species network analysis indicated a significant correlation (p < 0.05) of diseases specific microbial signature with other lung microbiome members. The current study strengthens the proposed hypothesis that each respiratory illness has unique microbial signatures. These microbial signatures could be used as diagnostic markers to differentiate among various respiratory illnesses.


Assuntos
Doenças Pulmonares Intersticiais/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Sarcoidose/microbiologia , Idoso , Bactérias/genética , Lavagem Broncoalveolar , Diagnóstico Diferencial , Feminino , Humanos , Pulmão/microbiologia , Masculino , Microbiota/genética , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
11.
Microbiome ; 8(1): 115, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32767985

RESUMO

BACKGROUND: From early life, children are exposed to a multitude of environmental exposures, which may be of crucial importance for healthy development. Here, the environmental microbiota may be of particular interest as it represents the interface between environmental factors and the child. As infants in modern societies spend a considerable amount of time indoors, we hypothesize that the indoor bed dust microbiota might be an important factor for the child and for the early colonization of the airway microbiome. To explore this hypothesis, we analyzed the influence of environmental exposures on 577 dust samples from the beds of infants together with 542 airway samples from the Copenhagen Prospective Studies on Asthma in Childhood2010 cohort. RESULTS: Both bacterial and fungal community was profiled from the bed dust. Bacterial and fungal diversity in the bed dust was positively correlated with each other. Bacterial bed dust microbiota was influenced by multiple environmental factors, such as type of home (house or apartment), living environment (rural or urban), sex of siblings, and presence of pets (cat and/or dog), whereas fungal bed dust microbiota was majorly influenced by the type of home (house or apartment) and sampling season. We further observed minor correlation between bed dust and airway microbiota compositions among infants. We also analyzed the transfer of microbiota from bed dust to the airway, but we did not find evidence of transfer of individual taxa. CONCLUSIONS: Current study explores the influence of environmental factors on bed dust microbiota (both bacterial and fungal) and its correlation with airway microbiota (bacterial) in early life using high-throughput sequencing. Our findings demonstrate that bed dust microbiota is influenced by multiple environmental exposures and could represent an interface between environment and child. Video Abstract.


Assuntos
Bactérias/isolamento & purificação , Leitos/microbiologia , Poeira , Meio Ambiente , Fungos/isolamento & purificação , Micobioma , Sistema Respiratório/microbiologia , Animais , Bactérias/genética , Gatos , Dinamarca , Cães , Feminino , Fungos/genética , Habitação , Humanos , Lactente , Masculino , Micobioma/genética , Animais de Estimação/microbiologia , Estudos Prospectivos , Saúde da População Rural , Estações do Ano , Irmãos , Saúde da População Urbana
12.
Nat Commun ; 11(1): 426, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969566

RESUMO

Maternal dietary interventions during pregnancy with fish oil and high dose vitamin D have been shown to reduce the incidence of asthma and wheeze in offspring, potentially through microbial effects in pregnancy or early childhood. Here we analyze the bacterial compositions in longitudinal samples from 695 pregnant women and their children according to intervention group in a nested, factorial, double-blind, placebo-controlled, randomized trial of n-3 long-chain fatty acids and vitamin D supplementation. The dietary interventions affect the infant airways, but not the infant fecal or maternal vaginal microbiota. Changes in overall beta diversity are observed, which in turn associates with a change in immune mediator profile. In addition, airway microbial maturation and the relative abundance of specific bacterial genera are altered. Furthermore, mediation analysis reveals the changed airway microbiota to be a minor and non-significant mediator of the protective effect of the dietary interventions on risk of asthma. Our results demonstrate the potential of prenatal dietary supplements as manipulators of the early airway bacterial colonization.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Microbiota/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Pré-Natal , Sistema Respiratório/microbiologia , Vitamina D/administração & dosagem , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Estudos de Coortes , Suplementos Nutricionais/análise , Método Duplo-Cego , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Gravidez
13.
Sci Transl Med ; 12(569)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177184

RESUMO

There have been reports of associations between cesarean section delivery and the risk of childhood asthma, potentially mediated through changes in the gut microbiota. We followed 700 children in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) cohort prospectively from birth. We examined the effects of cesarean section delivery on gut microbial composition by 16S rRNA gene amplicon sequencing during the first year of life. We then explored whether gut microbial perturbations due to delivery mode were associated with a risk of developing asthma in the first 6 years of life. Delivery by cesarean section was accompanied by marked changes in gut microbiota composition at one week and one month of age, but by one year of age only minor differences persisted compared to vaginal delivery. Increased asthma risk was found in children born by cesarean section only if their gut microbiota composition at 1 year of age still retained a cesarean section microbial signature, suggesting that appropriate maturation of the gut microbiota could mitigate against the increased asthma risk associated with gut microbial changes due to cesarean section delivery.


Assuntos
Asma , Microbioma Gastrointestinal , Cesárea , Criança , Feminino , Humanos , Gravidez , Estudos Prospectivos , RNA Ribossômico 16S/genética
14.
JPEN J Parenter Enteral Nutr ; 43(2): 252-262, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29992630

RESUMO

BACKGROUND: Fortification of donor human milk (DHM) is required for optimal growth of very preterm infants, but there are concerns of more gut dysfunction and necrotizing enterocolitis (NEC) when using formula-based fortifiers (FFs), especially soon after birth. Intact bovine colostrum (BC) is rich in nutrients and bioactive factors, and protects against NEC in preterm pigs. We hypothesized that fortification of DHM with BC is superior to FFs to prevent gut dysfunction and infections when provided shortly after preterm birth. METHODS: Two FF products, Enfamil (ENF; intact protein, vegetable oil) and PreNAN+Nutrilon (NAN; extensively hydrolyzed protein, maltodextrin), were compared with BC as fortifier to DHM fed to preterm pigs for 5 days. RESULTS: Relative to the DHM+BC group, DHM+FF groups had higher diarrhea score and lower hexose uptake and lactase activity, and specifically the DHM+NAN group showed higher gut permeability, NEC score, more mucosa-adherent bacteria with altered gut microbiota structure (ie, lower diversity, increased Enterococcus, decreased Staphylococcus abundance). Both DHM+FF groups showed higher expression of intestinal cytokine and inflammation-related genes, more gut-derived bacteria in the bone marrow, lower density of mucin-containing goblet cells, and slightly higher colon lactate, stomach pH and acetate, and blood neutrophil-to-lymphocyte levels than the DHM+BC group. CONCLUSIONS: Used as a fortifier to DHM, BC is superior to FFs to support gut function, nutrient absorption, and bacterial defense mechanisms in preterm pigs. It is important to optimize the composition of nutrient fortifiers for preterm infants fed human milk.


Assuntos
Infecções Bacterianas/prevenção & controle , Colostro , Enterocolite Necrosante/prevenção & controle , Alimentos Fortificados , Fórmulas Infantis , Intestinos/fisiopatologia , Leite Humano , Animais , Animais Recém-Nascidos , Bovinos , Modelos Animais de Doenças , Feminino , Humanos , Recém-Nascido , Mucosa Intestinal , Permeabilidade , Suínos
15.
Commun Biol ; 2: 291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396571

RESUMO

Next-Generation Sequencing (NGS) of 16S rRNA gene is now one of the most widely used application to investigate the microbiota at any given body site in research. Since NGS is more sensitive than traditional culture methods (TCMs), many studies have argued for them to replace TCMs. However, are we really ready for this transition? Here we compare the diagnostic efficiency of the two methods using a large number of samples (n = 1,748 fecal and n = 1,790 hypopharyngeal), among healthy children at different time points. Here we show that bacteria identified by NGS represented 75.70% of the unique bacterial species cultured in each sample, while TCM only identified 23.86% of the bacterial species found by amplicon sequencing. We discuss the pros and cons of both methods and provide perspective on how NGS can be implemented effectively in clinical settings.


Assuntos
Bactérias/isolamento & purificação , Técnicas Bacteriológicas , DNA Bacteriano/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala , Hipofaringe/microbiologia , Ribotipagem , Fatores Etários , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Feminino , Voluntários Saudáveis , Humanos , Lactente , Recém-Nascido , Masculino , Filogenia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
16.
Sci Rep ; 9(1): 19596, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862994

RESUMO

In a circular economy concept, where more than 300 million tons of mining and quarrying wastes are produced annually, those are valuable resources, supplying metals that are extracted today by other processes, if innovative methods and processes for efficient extraction of these elements are applied. This work aims to assess microbiological and chemical spatial distribution within two tailing basins from a tungsten mine, using a MiSeq approach targeting the 16S rRNA gene, to relate microbial composition and function with chemical variability, thus, providing information to enhance the efficiency of the exploitation of these secondary sources. The tailings sediments core microbiome comprised members of family Anaerolineacea and genera Acinetobacter, Bacillus, Cellulomonas, Pseudomonas, Streptococcus and Rothia, despite marked differences in tailings physicochemical properties. The higher contents of Al and K shaped the community of Basin 1, while As-S-Fe contents were correlated with the microbiome composition of Basin 2. The predicted metabolic functions of the microbiome were rich in genes related to metabolism pathways and environmental information processing pathways. An in-depth understanding of the tailings microbiome and its metabolic capabilities can provide a direction for the management of tailings disposal sites and maximize their potential as secondary resources.


Assuntos
Microbiota , Mineração , Microbiologia do Solo , Tungstênio , Acinetobacter , Bacillus , Cellulomonas , Monitoramento Ambiental , Geografia , Metagenoma , Portugal , Pseudomonas , RNA Ribossômico 16S/genética , Streptococcus
17.
Nat Commun ; 9(1): 704, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440648

RESUMO

The originally published version of this Article contained an incorrect version of Figure 3 that was introduced following peer review and inadvertently not corrected during the production process. Both versions contain the same set of abundance data, but the incorrect version has the children's asthma status erroneously disconnected from the abundance data, thereby producing the non-representative p values and graphic presentations. These errors have now been rectified, with the correct version of Figure 3 replaced in both the PDF and HTML versions of the Article.

18.
Nat Commun ; 9(1): 141, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321519

RESUMO

The composition of the human gut microbiome matures within the first years of life. It has been hypothesized that microbial compositions in this period can cause immune dysregulations and potentially cause asthma. Here we show, by associating gut microbial composition from 16S rRNA gene amplicon sequencing during the first year of life with subsequent risk of asthma in 690 participants, that 1-year-old children with an immature microbial composition have an increased risk of asthma at age 5 years. This association is only apparent among children born to asthmatic mothers, suggesting that lacking microbial stimulation during the first year of life can trigger their inherited asthma risk. Conversely, adequate maturation of the gut microbiome in this period may protect these pre-disposed children.


Assuntos
Asma/epidemiologia , Desenvolvimento Infantil , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Asma/genética , Asma/microbiologia , Bacteroides/genética , Bifidobacterium/genética , Pré-Escolar , Enterobacteriaceae/genética , Enterococcus/genética , Feminino , Humanos , Lactente , Masculino , Mães , Risco , Staphylococcus/genética , Streptococcus/genética , Veillonella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA