Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 484: 116866, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367674

RESUMO

BACKGROUND: ABC transporter-mediated multidrug resistance (MDR) remains a major obstacle for cancer pharmacological treatment. Some tyrosine kinase inhibitors (TKIs) have been shown to reverse MDR. The present study was designed to evaluate for the first time whether foretinib, a multitargeted TKI, can circumvent ABCB1 and ABCG2-mediated MDR in treatment-resistant cancer models. METHODS: Accumulation of fluorescent substrates of ABCB1 and ABCG2 in ABCB1-overexpressing MES-SA/DX5 and ABCG2-overexpressing MCF-7/MX and their parenteral cells was evaluated by flow cytometry. The growth inhibitory activity of single and combination therapy of foretinib and chemotherapeutic drugs on MDR cells was examined by MTT assay. Analysis of combined interaction effects was performed using CalcuSyn software. RESULTS: It was firstly proved that foretinib increased the intracellular accumulation of rhodamine 123 and mitoxantrone in MES-SA/DX5 and MCF-7/MX cancer cells, with accumulation ratios of 12 and 2.2 at 25 µM concentration, respectively. However, it did not affect the accumulation of fluorescent substrates in the parental cells. Moreover, foretinib synergistically improved the cytotoxic effects of doxorubicin and mitoxantrone. The means of combination index (CI) values at fraction affected (Fa) values of 0.5, 0.75, and 0.9 were 0.64 ± 0.08 and 0.47 ± 0.09, in MES-SA/DX5 and MCF-7/MX cancer cells, respectively. In silico analysis also suggested that the drug-binding domain of ABCB1 and ABCG2 transporters could be considered as potential target for foretinib. CONCLUSION: Overall, our results suggest that foretinib can target MDR-linked ABCB1 and ABCG2 transporters in clinical cancer therapy.


Assuntos
Anilidas , Antineoplásicos , Neoplasias , Quinolinas , Humanos , Proteínas Proto-Oncogênicas c-met/farmacologia , Mitoxantrona/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Resistencia a Medicamentos Antineoplásicos , Resistência a Múltiplos Medicamentos , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Neoplasias , Subfamília B de Transportador de Cassetes de Ligação de ATP
2.
BMC Infect Dis ; 24(1): 711, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030479

RESUMO

BACKGROUND: Enterobacter cloacae complex (ECC) including different species are isolated from different human clinical samples. ECC is armed by many different virulence genes (VGs) and they were also classified among ESKAPE group by WHO recently. The present study was designed to find probable association between VGs and antibiotic susceptibility in different ECC species. METHODS: Forty-five Enterobacter isolates that were harvested from different clinical samples were classified in four different species. Seven VGs were screened by PCR technique and antibiotic susceptibility assessment was performed by disk-diffusion assay. RESULT: Four Enterobacter species; Enterobacter cloacae (33.3%), Enterobacter hormaechei (55.6%), Enterobacter kobei (6.7%) and Enterobacter roggenkampii (4.4%) were detected. Minimum antibiotic resistance was against carbapenem agents and amikacin even in MDR isolates. 33.3% and 13.3% of isolates were MDR and XDR respectively. The rpoS (97.8%) and csgD (11.1%) showed maximum and minimum frequency respectively. Blood sample isolated were highly virulent but less resistant in comparison to the other sample isolates. The csgA, csgD and iutA genes were associated with cefepime sensitivity. CONCLUSION: The fepA showed a predictory role for differentiating of E. hormaechei from other species. More evolved iron acquisition system in E. hormaechei was hypothesized. The fepA gene introduced as a suitable target for designing novel anti-virulence/antibiotic agents against E. hormaechei. Complementary studies on other VGs and ARGs and with bigger study population is recommended.


Assuntos
Antibacterianos , Enterobacter cloacae , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , Fatores de Virulência , Humanos , Antibacterianos/farmacologia , Enterobacter cloacae/genética , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Enterobacter cloacae/patogenicidade , Infecções por Enterobacteriaceae/microbiologia , Fatores de Virulência/genética , Virulência/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Enterobacter/isolamento & purificação , Masculino , Feminino
3.
Nutr Cancer ; 74(8): 2686-2712, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34994266

RESUMO

The acquisition of resistance and ultimately disease relapse after initial response to chemotherapy put obstacles in the way of cancer therapy. Epithelial-mesenchymal transition (EMT) is a biologic process that epithelial cells alter to mesenchymal cells and acquire fibroblast-like properties. EMT plays a significant role in cancer metastasis, motility, and survival. Recently, emerging evidence suggested that EMT pathways are very important in making drug-resistant involved in cancer. Natural products are gradually emerging as a valuable source of safe and effective anticancer compounds. Natural products could interfere with the different processes implicated in cancer drug resistance by reversing the EMT process. In this review, we illustrate the molecular mechanisms of EMT in the emergence of cancer metastasis. We then present the role of natural compounds in the suppression of EMT pathways in different cancers to overcome cancer cell drug resistance and improve tumor chemotherapy. HighlightsDrug-resistance is one of the obstacles to cancer treatment.EMT signaling pathways have been correlated to tumor invasion, metastasis, and drug-resistance.Various studies on the relationship between EMT and resistance to chemotherapy agents were reviewed.Different anticancer natural products with EMT inhibitory properties and drug resistance reversal effects were compared.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Humanos , Neoplasias/patologia
4.
J Oncol Pharm Pract ; 28(2): 310-325, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33509057

RESUMO

INTRODUCTION: Disease recurrence is an important obstacle in estrogen receptor positive (ER+) tamoxifen treated breast carcinoma patients. Tamoxifen resistance-related molecular mechanisms are not fully understood. Alteration in DNA methylation which contributes to transcriptional regulation of cancer-related genes plays a crucial role in tamoxifen response. In the present study, the contribution of promoter methylation and mRNA expression of PAX2 and AIB1 in the development of breast carcinoma and tamoxifen refractory was assessed. METHODS: Methylation specific-high resolution melting (MS-HRM) analysis and Real-time quantitative PCR (RT-qPCR) experiment were performed to analyze the promoter methylation and mRNA expression levels of PAX2 and AIB1 genes in 102 breast tumors and adjacent normal breast specimens. RESULTS: We indicated that PAX2 expression is decreased in breast tissues due to hypermethylation in its promoter region. Compared to the adjacent normal tissues, the tumors exhibited significantly lower relative mRNA levels of PAX2 and increased expression of AIB1. Aberrant promoter methylation of PAX2 and overexpression of AIB1 was observed in tamoxifen resistance patients compared to the sensitive ones. Cox regression analysis exhibited that the increased promoter methylation status of PAX2 and overexpression of AIB1 remained as unfavorable identifiers which influence patients' survival independently. CONCLUSIONS: Our results revealed that the aberration in PAX2 promoter methylation and AIB1 overexpression are associated with the tamoxifen response in breast carcinoma patients. Further research is needed to demonstrate the potential of using PAX2 and AIB1 expression and their methylation-mediated regulation as predictive or prognostic biomarkers or as a new target therapy for better disease management.


Assuntos
Neoplasias da Mama , Coativador 3 de Receptor Nuclear/genética , Fator de Transcrição PAX2 , Regiões Promotoras Genéticas , Tamoxifeno , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Metilação , Recidiva Local de Neoplasia , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Tamoxifeno/uso terapêutico
5.
Bioorg Chem ; 112: 104904, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933802

RESUMO

Novel imidazole-chalcone derivatives were designed and synthesized as tubulin polymerization inhibitors and anticancer agents. The antiproliferative activity of the imidazole-chalcone was assessed on some human cancer cell lines including A549 (adenocarcinoma human alveolar basal epithelial cells), MCF-7 (human breast cancer cells), MCF-7/MX (mitoxantrone resistant human breast cancer cells), and HEPG2 (human hepatocellular carcinoma cells). Generally, the imidazole-chalcone derivatives exhibited more cytotoxicity on A549 cancer cells in comparison to the other three cell lines, among them compounds 9j' and 9g showed significant cytotoxicity with IC50 values ranging from 7.05 to 63.43 µM against all the four human cancer cells. The flow cytometry analysis of A549 cancer cells treated with 9g and 9j' displayed that these compounds induced cell cycle arrest at the G2/M phase at low concentrations and increased the number of apoptotic cells (cells in subG1 phase) at higher concentrations. They have also inhibited tubulin polymerization similar to combretastatin A-4 (CA-4). Annexin V binding staining assay in A549 cancer cells revealed that compound 9j' induced apoptosis (early and late). Finally, molecular docking studies of 9j' into the colchicine-binding site of tubulin presented the probable interactions of these compounds with tubulin.


Assuntos
Antineoplásicos/farmacologia , Chalcona/farmacologia , Desenho de Fármacos , Imidazóis/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/química , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
6.
Bioorg Chem ; 115: 105162, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34314919

RESUMO

A newly designed series of imidazolyl-methyl- l-2,4-thiazolidinediones 9 (a-m) were synthesized and In Silico studies were carried out to rationalize their anti-diabetic activity. Generally, all newly synthesized thiazolidinediones had anti-hyperglycemic activity compared with a diabetic-control group, without toxicity in 3T3 cells (viability ≥ 90%). These studies revealed that the compounds 9e and 9b (11∗10-6mol/kg) lowered blood glucose more effectively when compared to pioglitazone at the same dose. Following the administration of compound 9e, no weight gains or any serious side effects on liver and pancreas were observed. Moreover, the glucose consumption assay results showed a significant glucose-lowering effect (p < 0.001) in HepG2 cells, which were exposed to 11 mM of glucose at concentrations of 1.25-10 mM of compound 9e. Also, the PPAR-γ gene expression study revealed that pioglitazone and 9e showed similar behavior relative to the control group.


Assuntos
Desenho de Fármacos , Hipoglicemiantes/síntese química , Tiazolidinedionas/química , Células 3T3 , Animais , Sítios de Ligação , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/metabolismo , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , PPAR gama/agonistas , PPAR gama/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pioglitazona/farmacologia , Ratos , Relação Estrutura-Atividade , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico
7.
Nutr Cancer ; 72(3): 522-527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31290701

RESUMO

Glucosamine (GlcN) is a natural amino monosaccharide in the human body, and evidence of its anticancer effects is growing. In this study, we aimed to evaluate the effects of GlcN for its cytotoxicity, MDR reversal effects and inhibitory effects on function and expression of P-glycoprotein (P-gp) transporter in the daunorubicin-resistant human gastric cancer cells. Cell viability was measured by MTT assay to evaluate the cytotoxicity and multidrug resistance (MDR) reversal effects of GlcN. The effects of GlcN on function and mRNA expression level of P-gp transporter were assessed by flow cytometry and real-time RT-qPCR, respectively. Our results indicated that GlcN reduced the proliferation of human gastric cancer cell line EPG85-257 and its drug-resistant variant EPG85-257RD in a dose-dependent manner. GlcN (at the concentrations of 0.5 and 1 mM) also enhanced the sensitivity of EPG85-257RDB cells to daunorubicin. The cellular accumulation studies showed that GlcN inhibited efflux activity of P-gp and enhanced the mean fluorescent intensity of Rho123 while ˙it had no effects on P-gp gene expression in these cells. This study suggested that the inhibition of P-gp activity is a novel mechanism of action by which GlcN could reverse MDR in EPG85-257RDB cells.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Daunorrubicina/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Glucosamina/farmacologia , Neoplasias Gástricas/patologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rodamina 123/metabolismo , Neoplasias Gástricas/metabolismo
8.
Bioorg Chem ; 98: 103711, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179282

RESUMO

A new series of styrylquinolines was designed and synthesized as anticancer agents and tubulin polymerization inhibitors. The in vitro anticancer activity of the synthesized quinolines was evaluated against four human cancer cell lines including A-2780 (human ovarian carcinoma), A-2780/RCIS (cisplatin resistant human ovarian carcinoma), MCF-7 (human breast cancer cells), MCF-7/MX (mitoxantrone resistant human breast cancer cells) and normal Huvec cells. Generally, among the forty-eight newly synthesized quinolines, compounds possessing N-trimethoxy phenyl showed stronger cytotoxic activity with IC50 values ranging from 0.38 to 5.01 µM against all four cancer cell lines. Compounds 9VII-c and 9IV-c showed significant cytotoxic activity on A-2780 cancer cells, stronger than the other compounds and comparable to reference drug CA-4. Compound 9IV-c possessing 3,4-dimethoxystyryl and N-trimethoxy phenyl groups demonstrated potent cytotoxic effects with IC50 values ranging from 0.5 to 1.66 µM on resistant cancer cells as well as their parental cells. Annexin V binding staining assay in A-2780 and MCF-7/MX cancer cells, revealed that compound 9IV-c induced early and late apoptosis. Compounds 9IV-c and 9VII-b, inhibited tubulin polymerization similar to CA4. Finally, molecular docking studies of 9IV-c and 9VII-b into the colchicine-binding site of tubulin displayed the possible interactions of these compounds with tubulin.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Quinolinas/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
J Cell Physiol ; 234(2): 1257-1267, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30146692

RESUMO

Despite years of intensive research, breast cancer remains the leading cause of death in women worldwide. New technologies including oncolytic virus therapies, virus, and phage display are among the most powerful and advanced methods that have emerged in recent years with potential applications in cancer prevention and treatment. Oncolytic virus therapy is an interesting strategy for cancer treatment. Presently, a number of viruses from different virus families are under laboratory and clinical investigation as oncolytic therapeutics. Oncolytic viruses (OVs) have been shown to be able to induce and initiate a systemic antitumor immune response. The possibility of application of a multimodal therapy using a combination of the OV therapy with immune checkpoint inhibitors and cancer antigen vaccination holds a great promise in the future of cancer immunotherapy. Display of immunologic peptides on bacterial viruses (bacteriophages) is also increasingly being considered as a new and strong cancer vaccine delivery strategy. In phage display immunotherapy, a peptide or protein antigen is presented by genetic fusions to the phage coat proteins, and the phage construct formulation acts as a protective or preventive vaccine against cancer. In our laboratory, we have recently tested a few peptides (E75, AE37, and GP2) derived from HER2/neu proto-oncogene as vaccine delivery modalities for the treatment of TUBO breast cancer xenograft tumors of BALB/c mice. Here, in this paper, we discuss the latest advancements in the applications of OVs and bacterial viruses display systems as new and advanced modalities in cancer immune therapeutics.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/terapia , Vacinas Anticâncer/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos , Imunoterapia/métodos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Animais , Antineoplásicos Imunológicos/efeitos adversos , Bacteriófagos/genética , Bacteriófagos/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/virologia , Vacinas Anticâncer/efeitos adversos , Técnicas de Visualização da Superfície Celular , Terapia Combinada , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunoterapia/efeitos adversos , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Proto-Oncogene Mas
10.
J Cell Physiol ; 233(9): 7305-7319, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29574992

RESUMO

Tamoxifen is a standard anti-hormone treatment in estrogen receptor positive breast carcinoma patients. Unfortunately, about 50% of patients relapse during treatment. Promoter hypermethylation contributes to the epigenetic modulation of tamoxifen resistance-related genes. To evaluate the contribution of DNMTs expression and their promoter methylation as diagnostic biomarkers in development of breast malignancy and tamoxifen resistance, the present study was designed and 107 breast tumors and normal breast tissues were recruited. Methylation-specific high-resolution melt curve analysis and quantitative RT-PCR were performed to evaluate DNMTs promoter methylation and mRNA expression, respectively. Our results indicated that DNMT3A and DNMT3B promoters were demethylated in breast tumors as compared to control tissues. The mRNA expression levels of all three DNMTs were significantly increased in tumor specimens in comparison to control tissues (p < 0.05). Among tumor tissues, DNMT3A promoter methylation was significantly higher in tamoxifen sensitive patients (p = 0.001). Overexpression of DNMT3A (p = 0.037) and DNMT3B (p < 0.001) mRNA were observed in tamoxifen resistance group. Multivariate logistic regression analysis indicated that low methylation status of DNMT3A and overexpression of DNMT3B could be as independent predictors of disease recurrence. Multivariate Cox regression analysis, revealed that high methylation status of DNMT3A could be an independent and favorable predictor for disease free survival (p = 0.002) and overall survival (p = 0.026); high expression of DNMT1 (p = 0.03) remained significant and unfavorable predictive factor for overall survival. In conclusion, our data for the first time indicated that low methylation status of DNMT3A promoter and overexpression of DNMT3B could contribute to disease recurrence in tamoxifen-treated breast cancer patients.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Metiltransferases/genética , Regiões Promotoras Genéticas , Tamoxifeno/farmacologia , Adulto , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Modelos Logísticos , Metiltransferases/metabolismo , Pessoa de Meia-Idade , Análise Multivariada , Modelos de Riscos Proporcionais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Resultado do Tratamento
11.
Cytokine ; 97: 167-174, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28651126

RESUMO

Tumor necrosis factor-α (TNF-α) is a cytokine involved in the various physiopathological processes such as autoimmune disorders and inflammation related diseases. Some multidrug resistant (MDR) cancer cell lines including MCF-7/MX are more vulnerable to cytotoxic effects of TNF-α than their parental lines. In this study, breast cancer cell line MCF-7 and its MDR derivative MCF-7/MX were exposed to TNF-α afterward various downstream signaling mediators of TNF-α were analyzed. Although, treatment of MCF-7 cells with TNF-α activated NF-kB and caused RIP1 ubiquitination, TNF-α exposure led to JNK and RIP1 phosphorylation in MCF-7/MX cells. In both cell lines TNF-α did not activate the caspase cascade. Moreover, AnexinV/PI analysis showed that cytotoxic effects of TNF-α on MCF-7/MX is mediated via apoptosis independent mechanisms and inhibition of RIP1 kinase activity using necrostatin-1 revealed that kinase activity of RIP1 plays role in the production of ROS, activation of JNK and cellular death following exposure of MCF-7/MX cells to TNF-α. Overall, it seems that RIP1 ubiquitination and NF-kB activation are prosurvival signaling mediators protecting MCF-7 cells against cytotoxic effects of TNF-α while TNF-α drives MCF-7/MX cells to non-apoptotic cellular death via kinase activity of RIP1, activation of JNK and ROS production.


Assuntos
Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Apoptose , Feminino , Humanos , MAP Quinase Quinase 4/metabolismo , Células MCF-7 , NF-kappa B/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo
12.
Nutr Cancer ; 69(6): 911-919, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28718677

RESUMO

Crocin and safranal are active ingredients in the saffron. Some studies have demonstrated antitumor activities of saffron ingredients. The aim of this study was to evaluate cytotoxic effects of crocin and safranal in oral squamous cell carcinoma (KB cells) and NIH 3T3 cell line as nonmalignant cells. The cells were incubated with crocin and safranal at 37°C for 24, 48, and 72 h, and cell viability was quantitated by MTT assay. Apoptotic cells, cell cycle distribution, and sub-G1 fraction were determined using propidium iodide staining of DNA fragmentation by flow cytometry. Crocin (0.05-4 mM) and safranal (0.2-3.2 mM) significantly inhibited the growth of KB cells (the inhibitory growth effects of all concentrations for both were >50% after 72 h), while they had less inhibitory effects on NIH 3T3 cells viability. The IC50 values of crocin and safranal against NIH 3T3 cells after 72 h were determined as 2.8 and 0.3 mM, respectively. Crocin and safranal induced a sub-G1 peak in the flow cytometry histogram of treated cells compared to control cells indicating that apoptotic cell death is involved in the toxicity of crocin and safranal. Apoptotic effects of crocin and safranal in tumor cells were more than normal cells. Neither crocin nor safranal affected the cell cycle progression. Crocin and safranal exerted apoptotic effects in KB cell line.


Assuntos
Carotenoides/farmacologia , Crocus/química , Cicloexenos/farmacologia , Extratos Vegetais/farmacologia , Terpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Humanos , Camundongos , Neoplasias Bucais/tratamento farmacológico , Células NIH 3T3
13.
Phytother Res ; 30(1): 84-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26503061

RESUMO

Recent in vitro studies showed that sesquiterpene coumarins (SCs) can be used as chemosensitizers. In this study, 14 SCs were isolated and purified from roots of four Ferula species and their structures were elucidated by spectroscopic methods. The purified SCs were evaluated for multidrug resistance (MDR) reversal properties in A2780/RCIS cells (cisplatin-resistant derivatives of the human ovarian carcinoma cell line A2780P). Among the tested compounds, mogoltacin, mogoltadone, farnesiferol A, farnesiferol B, farnesiferol C, lehmferin, conferdione, and samarcandin showed significant MDR reversing effects. The combination of nontoxic concentrations of SCs (20 µM) with cisplatin enhanced cisplatin cytotoxicity on A2780/RCIS cells significantly. Flow cytometric efflux assay confirmed that the intracellular accumulation of 5-carboxyfluorescein diacetate (5-CFDA) was significantly increased in A2780/RCIS cells when treated with SCs. Our findings revealed that conferdione and samarcandin possessed the highest inhibitory effects on multidrug resistance-associated protein 2 pump efflux, and therefore, these compounds could be considered as lead scaffolds for further structure modifications.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cisplatino/farmacologia , Cumarínicos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neoplasias Ovarianas/patologia , Sesquiterpenos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Ferula/química , Fluoresceínas/metabolismo , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Raízes de Plantas/química
14.
Drug Chem Toxicol ; 38(3): 293-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25238169

RESUMO

CONTEXT: Scutellaria lindbergii Rech. f. (Lamiaceae) is an Iranian species of Scutellaria which has been shown to exert antimicrobial, antioxidant and cytotoxic effects. OBJECTIVE: The protective properties of total methanol extract (TME) of S. lindbergii and its fractions (defatted and CH2Cl2) were investigated against cytotoxic and genotoxic effects of H2O2 in NIH 3T3 cell line as non-malignant cells. MATERIALS AND METHODS: The cells were incubated with different concentrations of S. lindbergii root extracts [TME (15-250 µg ml(-)(1)), defatted fraction (15-500 µg ml(-)(1)) and CH2Cl2 fraction (5-40 µg ml(-)(1))] and toxic concentration of H2O2 (200 µM) at 37 °C for 2 h concurrently and Cell viability was quantitated by MTT assay. The antigenotoxic effect of extracts was investigated using comet assay. The cells were incubated with extracts [TME (25-250 µg ml(-)(1)), defatted fraction (25-500 µg ml(-)(1)) and CH2Cl2 fraction (5-40 µg ml(-)(1))] and H2O2 (25 µM) at 4 °C for 20 min, then the comet assay was performed. DNA damage was expressed as percentage tail DNA. RESULTS: Total methanol extract of S. lindbergii and its fractions had a significant inhibitory effect on DNA damage. The IC50 values of TME, defatted fraction and CH2Cl2 fraction against DNA damage were determined as 48, 138 and 8 µg ml(-)(1), respectively. CONCLUSION: S. lindbergii extracts can prevent oxidative DNA damage, which is likely due to its flavonoids and phenolic compounds as antioxidant constituents.


Assuntos
Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Scutellaria , Animais , Antioxidantes/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Citoproteção , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos , Células NIH 3T3 , Fitoterapia , Extratos Vegetais/isolamento & purificação , Raízes de Plantas , Plantas Medicinais , Scutellaria/química
15.
Drug Chem Toxicol ; 37(4): 427-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24444050

RESUMO

The antigenotoxic activity of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) in human peripheral lymphocytes exposed to oxidative stress was investigated. Human lymphocytes were treated with different concentrations of these aminosugars (0, 2.5, 5, 10, 20 and 40 mM) and 25 µM H2O2 simultaneously and evaluated by single cell gel electrophoresis technique (Comet assay). The single cells were analyzed using "TriTek Cometscore version 1.5" software and the data were presented as % DNA in tail. Both GlcN and GlcNAc at examined concentrations (2.5, 5, 10, 20 and 40 mM) did not reveal any genotoxicity compared to the vehicle control (PBS). Glucosamine at all concentrations (2.5, 5, 10, 20 and 40 mM) showed a significant protective activity (% DNA in tail ranging from 16.07 ± 0.85 to 5.47 ± 0.26, p < 0.001) against H2O2 induced DNA damage (% DNA in tail = 38 ± 0.65) while its N-acetylated analog only indicated a slight DNA protection at concentration of 40 mM (% DNA in tail = 33.4 ± 1.17, p < 0.01). We concluded that GlcN at tested concentrations exhibited potent antigenotoxic effect and its protection activity might be related to the presence of 2-NH2 moiety in its chemical backbone.


Assuntos
Acetilglucosamina/farmacologia , Dano ao DNA/efeitos dos fármacos , Glucosamina/farmacologia , Linfócitos/efeitos dos fármacos , Adulto , Antimutagênicos/administração & dosagem , Antimutagênicos/farmacologia , Ensaio Cometa , Relação Dose-Resposta a Droga , Glucosamina/administração & dosagem , Humanos , Peróxido de Hidrogênio/toxicidade , Técnicas In Vitro , Linfócitos/patologia , Estresse Oxidativo/efeitos dos fármacos
16.
Iran J Basic Med Sci ; 26(12): 1431-1437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970445

RESUMO

Objectives: Macrophages exhibit versatile phenotypes, with M1 macrophages releasing inflammatory cytokines and possessing microbicidal activities, while M2 macrophages release anti-inflammatory cytokines and contribute to tissue repair. The M1/M2 imbalance plays a significant role in various pathological processes. Crocin, known for its antioxidant properties and ability to eliminate free radicals, has been investigated for its potential anti-inflammatory effects. We examined the effect of the primary activation state of macrophages on their phenotype switching when exposed to crocin. Materials and Methods: The crocin impact on macrophage viability was evaluated by MTT. TNF-α, IL-6, and IL-10 secretion, as well as Nos2/Arg1 ratio, were measured in cells treated with crocin or LPS+IFN-γ (M1 inducers), in cells concurrently treated with crocin and LPS+IFN-γ or in cells pretreated with crocin before M1 induction. Results: Crocin did not show any toxicity at the concentration of 500 µM or lower. When uncommitted macrophages were exposed to crocin (25-100 µM), it elevated certain M1 activity indicators, including Nos2/Arg1 ratio and TNF-α secretion, but not IL-6. Crocin in concurrent treatment with LPS+IFN-γ prevented the increase in M1 indicators, Nos2/Arg1 ratio, and TNF-α secretion. However, pretreatment of cells with crocin before the addition of LPS+IFN-γ did not reverse M1 induction in macrophages; instead, it further increased the Nos2/Arg1 ratio and TNF-α secretion. IL-10 was not detectable in any of the experimental groups. Conclusion: It appears that the modulatory effects of crocin on macrophage M1/M2 phenotype switching partly depend on the presence or absence of inflammatory mediators and, accordingly, the initial state of macrophage commitment.

17.
Med Oncol ; 40(12): 354, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37952224

RESUMO

Glioblastoma multiforme (GBM), a highly aggressive tumor, poses significant challenges in achieving successful treatment outcomes. Conventional therapeutic modalities including surgery, radiation, and chemotherapy have demonstrated limited efficacy, primarily attributed to the complexities associated with drug delivery to the tumor site and tumor heterogeneity. To address this critical need for innovative therapies, the potential of cancer vaccines utilizing tumor cells and dendritic cells has been explored for GBM treatment. This article provides a comprehensive review of therapeutic vaccinations employing cell-based vaccine strategies for the management of GBM. A meticulous evaluation of 45 clinical trials involving more than 1500 participants revealed that cell-based vaccinations have exhibited favorable safety profiles with minimal toxicity. Moreover, these vaccines have demonstrated modest improvements in overall survival and progression-free survival among patients. However, certain limitations still persist. Notably, there is a need for advancements in the development of potent antigens to evoke immune responses, as well as the optimization of dosage regimens. Consequently, while cell-based vaccinations show promise as a potential therapeutic approach for GBM, further research is imperative to overcome the current limitations. The ultimate objective is to surmount these obstacles and establish cell-based vaccinations as a standard therapeutic modality for GBM.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/patologia , Células Dendríticas , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Resultado do Tratamento , Imunoterapia
18.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3723-3732, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37310508

RESUMO

Cancer endocrine therapy can promote evolutionary dynamics and lead to changes in the gene expression profile of tumor cells. We aimed to assess the effect of tamoxifen (TAM)-resistance induction on ABCG2 pump mRNA, protein, and activity in ER + MCF-7 breast cancer cells. We also evaluated if the resistance to TAM leads to the cross-resistance toward mitoxantrone (MX), a well-known substrate of the ABCG2 pump. The ABCG2 mRNA and protein expression were compared in MCF-7 and its TAM-resistant derivative MCF-7/TAMR cells using RT-qPCR and western blot methods, respectively. Cross-resistance of MCF-7/TAMR cells toward MX was evaluated by the MTT method. Flow cytometry was applied to compare ABCG2 function between cell lines using MX accumulation assay. ABCG2 mRNA expression was also analyzed in tamoxifen-sensitive (TAM-S) and tamoxifen-resistant (TAM-R) breast tumor tissues. The levels of ABCG2 mRNA, protein, and activity were significantly higher in MCF-7/TAMR cells compared to TAM-sensitive MCF-7 cells. MX was also less toxic in MCF-7/TAMR compared to MCF-7 cells. ABCG2 was also upregulated in tissue samples obtained from TAM-R cancer patients compared to TAM-S patients. Prolonged exposure of ER + breast cancer cells to the active form of TAM and clonal evolution imposed by the selective pressure of the drug can lead to higher expression of the ABCG2 pump in the emerged TAM-resistant cells. Therefore, in choosing a sequential therapy for a patient who develops resistance to TAM, the possibility of the cross-resistance of the evolved tumor to chemotherapy drugs that are ABCG2 substrates should be considered. Prolonged exposure of MCF-7 breast cancer cells to tamoxifen can cause resistance to it and an increase in the expression of the ABCG2 mRNA and protein levels in the cells. Tamoxifen resistance can lead to cross-resistance to mitoxantrone.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Mitoxantrona/farmacologia , Mitoxantrona/uso terapêutico , Células MCF-7 , Regulação para Cima , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , RNA Mensageiro/metabolismo , Regulação Neoplásica da Expressão Gênica , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacologia
19.
Res Pharm Sci ; 18(1): 78-88, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846736

RESUMO

Background and purpose: Although some proposed mechanisms responsible for tamoxifen resistance have already been present, further study is needed to determine the mechanisms underlying tamoxifen resistance more clearly. The critical role of Notch signaling has been described in promoting resistance in therapeutics, but there is little information about its role in tamoxifen resistance progression. Experimental approach: In the present study, the expression of Notch pathway genes, including Notch4, nicastrin and the Notch downstream target Hes1 was evaluated using quantitative RT-PCR in 36 tamoxifen-resistant (TAM-R) and 36 tamoxifen-sensitive (TAM-S) patients. Expression data were correlated with the clinical outcome and survival of patients. Findings/Results: mRNA levels of Notch4 (fold change = 2.7), nicastrin (fold change = 6.71), and Hes1 (fold change= 7.07) were significantly higher in TAM-R breast carcinoma patients compared to sensitive cases. We confirmed all these genes were co-expressed. Hence, it seems that Notch signaling is involved in tamoxifen resistance in our TAM-R patients. Obtained results showed that Hes1, nicastrin, and Notch4 mRNA upregulation was correlated with the N stage. The extracapsular nodal extension was associated with nicastrin and Notch4 overexpression. Moreover, nicastrin overexpression was correlated with perineural invasion. Hes1 upregulation was also associated with nipple involvement. Finally, the Cox regression proportional hazard test revealed that overexpression of nicastrin was an independent worse survival factor. Conclusion and implications: Presumably, upregulation of the Notch pathway may be involved in tamoxifen resistance in breast cancer patients.

20.
Iran J Basic Med Sci ; 26(6): 635-644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275756

RESUMO

Objectives: Today, the non-covalent PEGylation methods of protein pharmaceuticals attract more attention and possess several advantages over the covalent approach. In the present study, Amino Acid-mPEGs (aa-mPEGs) were synthesized, and the human Growth Hormone (hGH) stability profile was assessed in their presence and absence. Materials and Methods: aa-mPEGs were synthesized with different amino acids (Trp, Glu, Arg, Cys, and Leu) and molecular weights of polymers (2 and 5 KDa). The aa-mPEGs were analyzed with different methods. The physical and structural stabilities of hGH were analyzed by SEC and CD spectroscopy methods. Physical stability was assayed at different temperatures within certain intervals. Molecular dynamics (MD) simulation was used to realize the possible mode of interaction between protein and aa-mPEGs. The cell-based method was used to evaluate the cytotoxicity. Results: HNMR and FTIR spectroscopy indicated that aa-mPEGs were successfully synthesized. hGH as a control group is known to be stable at 4 °C; a pronounced change in monomer degradation is observed when stored at 25 °C and 37 °C. hGH:Glu-mPEG 2 kDa with a molar ratio of 1:1 to the protein solution can significantly increase the physical stability. The CD spectroscopy method showed that the secondary structure of the protein was preserved during storage. aa-mPEGs did not show any cytotoxicity activities. The results of MD simulations were in line with experimental results. Conclusion: This paper showed that aa-mPEGs are potent excipients in decreasing the aggregation of hGH. Glu-mPEG exhibited the best-stabilizing properties in a harsh environment among other aa-mPEGs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA