Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(45): 25080-25089, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31690914

RESUMO

A large system containing heteropoly acids (HPAs) and Nafion® 117 was simulated and studied to verify whether the additive particles affect the formation of the water percolating network or not. Two structures of HPA particles were considered as dopants, i.e. H9AlW6O24 and H3PW12O40. The SAXS simulation revealed that HPA particle addition to the membrane matrix leads to an increased order in the abundance and size of the hydrophilic region beside an expansion of the distance between the ionic domains. The morphological assessment shows that the hydrophilic phase domains in the HPA-doped Nafion® were spaced further apart than in the undoped membrane. These results show that adding HPA particles to the PFSA membrane reduces the so-called dead-pockets and makes the water channels more interconnected. For undoped Nafion®, the so-called percolating hydration level (λp) was 5.63. In other words, according to these results, approximately 8 wt% of water molecules are required to establish a spanning water network. The H9AlW6O24 and H3PW12O40 particles directly influence the morphology of water clusters and reduce by 10.12% and 17.41% the required hydration level to reach the percolation threshold, respectively.

2.
Chemphyschem ; 18(23): 3485-3497, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28926182

RESUMO

The use of a Nafion/phosphotungstic acid composite membrane and the impact of varying concentration of heteropoly acid (HPA) on the well-known effective mechanisms of proton transport were investigated by using classical and quantum hopping molecular dynamics simulation. Our simulations demonstrated that the HPA particles have a favorable influence on the Grotthuss mechanism in proton transportation at low hydration levels. From radial distribution function examinations, it was found that HPA particles were solvated with water and also exhibited stronger affinity toward hydronium ions. It can be concluded that addition of hydrophilic particles such as HPA improved proton conductivity. To assess this effectiveness, lifetime and half-life of the hydrogen bond (H-bond) network in the formed water clusters were investigated at different HPA concentrations. The analysis of H-bond network stability revealed that the lifetime of H-bonds between water molecules and protons decreased with increasing HPA concentration. Moreover, we found that the H-bond network between water molecules was more stable, and the mismatch between simulated bulk water and those formed water clusters in the considered systems decreased upon HPA addition. Indeed, for HPA doped membrane, the activation energy of proton transfer process from a hydronium ion to a water molecule was lower than for the undoped system. The water diffusion coefficient decreased and that of the hydronium ion enhanced with an increase in HPA doping level.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32897822

RESUMO

ASPERGILLUS FLAVUS: is the main aflatoxin producer in food and feed and has wide ecological niches. Contamination of food products such as pistachio nuts and aflatoxin secretion directly affects food safety and international food product trades. Abilities of 13 yeast strains isolated from 200 soil and pistachio nut samples collected in Iranian orchards to reduce the growth of A. flavus as well as aflatoxin production were assessed in dual culture, volatile and non-volatile compounds tests. The growth of A. flavus was reduced by 32-60%, 13-31% and 40-61% in dual culture, volatile and non-volatile compounds, respectively, while aflatoxin B1 production was diminished by 90.6-98.3%. Based on these assays, five yeast strains were selected for co-inoculation experiments using soil, pistachio hulls and leaf. A significant reduction in colony-forming units (CFU) ranging from 23% to 110% (p < .05) was observed. Molecular, physiological and morphological identification revealed these were strains of Pichia kudriavzevii and Lachansea thermotolerans. Aflatoxin biocontrol with yeast strains possesses many advantages including the ease of commercial production and organic application which is an environmental approach. More investigation is required to understand the efficiency of selective strains to inhibit A. flavus and aflatoxin production as well as withstand predominant abiotic stress in pistachio orchards and mass production in field application.


Assuntos
Aflatoxinas/química , Antifúngicos/metabolismo , Aspergillus flavus/metabolismo , Agentes de Controle Biológico/metabolismo , Pistacia/metabolismo , Saccharomyces cerevisiae/metabolismo , Contaminação de Alimentos/prevenção & controle , Irã (Geográfico) , Nozes/microbiologia , Pichia/metabolismo , Patologia Vegetal , Saccharomyces cerevisiae/crescimento & desenvolvimento , Microbiologia do Solo , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA