Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677624

RESUMO

We present a thorough structural characterization of Graphene Nano Particles (GNPs) prepared by means of physical procedures, i.e., ball milling and ultra-sonication of high-purity synthetic graphite. UV-vis absorption/extinction spectroscopy, Dynamic Light Scattering, Transmission Electron Microscopy, IR and Raman spectroscopies were performed. Particles with small size were obtained, with an average lateral size = 70−120 nm, formed by few = 1−10 stacked layers, and with a small number of carboxylic groups on the edges. GNPs relatively more functionalized were separated by centrifugation, which formed stable water dispersions without the need for any surfactant. A critical reading and unified interpretation of a wide set of spectroscopic data was provided, which demonstrated the potential of Specular Reflectance Infrared Spectroscopy for the diagnosis and quantification of chemical functionalization of GNPs. Raman parameters commonly adopted for the characterization of graphitic materials do not always follow a monotonic trend, e.g., with the particle size and shape, thus unveiling some limitations of the available spectroscopic metrics. This issue was overcome thanks to a comparative spectra analysis, including spectra deconvolution by means of curve fitting procedures, experiments on reference materials and the exploitation of complementary characterization techniques.


Assuntos
Grafite , Nanopartículas , Grafite/química , Nanopartículas/química , Análise Espectral Raman/métodos
2.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555441

RESUMO

Hyperprogressive disease (HPD), an aggressive acceleration of tumor growth, was observed in a group of cancer patients treated with anti-PD1/PDL1 antibodies. The presence of a peculiar macrophage subset in the tumor microenvironment is reported to be a sort of "immunological prerequisite" for HPD development. These macrophages possess a unique phenotype that it is not clear how they acquire. We hypothesized that certain malignant cells may promote the induction of an "HPD-related" phenotype in macrophages. Bone-marrow-derived macrophages were exposed to the conditioned medium of five non-small cell lung cancer cell lines. Macrophage phenotype was analyzed by microarray gene expression profile and real-time PCR. We found that human NSCLC cell lines, reported as undergoing HPD-like tumor growth in immunodeficient mice, polarized macrophages towards a peculiar pro-inflammatory phenotype sharing both M1 and M2 features. Lipid-based factors contained in cancer cell-conditioned medium induced the over-expression of several pro-inflammatory cytokines and the activation of innate immune receptor signaling pathways. We also determined that tumor-derived Extracellular Vesicles represent the main components involved in the observed macrophage re-education program. The present study might represent the starting point for the future development of diagnostic tools to identify potential hyperprogressors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Macrófagos/metabolismo , Fenótipo , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
3.
Curr Issues Mol Biol ; 43(1): 163-175, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067290

RESUMO

Chemoresistance causes cancer relapse and metastasis, thus remaining the major obstacle to cancer therapy. While some light has been shed on the underlying mechanisms, it is clear that chemoresistance is a multifaceted problem strictly interconnected with the high heterogeneity of neoplastic cells. We utilized two different human cell lines, i.e., LoVo colon cancer and promyelocytic leukemia HL60 cells sensitive and resistant to doxorubicin (DXR), largely used as a chemotherapeutic and frequently leading to chemoresistance. LoVo and HL60 resistant cells accumulate less reactive oxygen species by differently modulating the levels of some pro- and antioxidant proteins. Moreover, the content of intracellular magnesium, known to contribute to protect cells from oxidative stress, is increased in DXR-resistant LoVo through the upregulation of MagT1 and in DXR-resistant HL60 because of the overexpression of TRPM7. In addition, while no major differences in mitochondrial mass are observed in resistant HL60 and LoVo cells, fragmented mitochondria due to increased fission and decreased fusion are detected only in resistant LoVo cells. We conclude that DXR-resistant cells evolve adaptive mechanisms to survive DXR cytotoxicity by activating different molecular pathways.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Doxorrubicina/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Magnésio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo
4.
Pharmacol Res ; 170: 105751, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197911

RESUMO

Duchenne Muscular Dystrophy (DMD) is a rare disorder characterized by progressive muscle wasting, weakness, and premature death. Remarkable progress has been made in genetic approaches, restoring dystrophin, or its function. However, the targeting of secondary pathological mechanisms, such as increasing muscle blood flow or stopping fibrosis, remains important to improve the therapeutic benefits, that depend on tackling both the genetic disease and the downstream consequences. Mitochondrial dysfunctions are one of the earliest deficits in DMD, arise from multiple cellular stressors and result in less than 50% of ATP content in dystrophic muscles. Here we establish that there are two temporally distinct phases of mitochondrial damage with depletion of mitochondrial mass at early stages and an accumulation of dysfunctional mitochondria at later stages, leading to a different oxidative fibers pattern, in young and adult mdx mice. We also observe a progressive mitochondrial biogenesis impairment associated with increased deacetylation of peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) promoter. Such histone deacetylation is inhibited by givinostat that positively modifies the epigenetic profile of PGC-1α promoter, sustaining mitochondrial biogenesis and oxidative fiber type switch. We, therefore, demonstrate that givinostat exerts relevant effects at mitochondrial level, acting as a metabolic remodeling agent capable of efficiently promoting mitochondrial biogenesis in dystrophic muscle.


Assuntos
Carbamatos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Biogênese de Organelas , Acetilação , Animais , Modelos Animais de Doenças , Epigênese Genética , Camundongos Endogâmicos mdx , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas
5.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066542

RESUMO

Biomineralization is the process by which living organisms generate organized mineral crystals. In human cells, this phenomenon culminates with the formation of hydroxyapatite, which is a naturally occurring mineral form of calcium apatite. The mechanism that explains the genesis within the cell and the propagation of the mineral in the extracellular matrix still remains largely unexplained, and its characterization is highly controversial, especially in humans. In fact, up to now, biomineralization core knowledge has been provided by investigations on the advanced phases of this process. In this study, we characterize the contents of calcium depositions in human bone mesenchymal stem cells exposed to an osteogenic cocktail for 4 and 10 days using synchrotron-based cryo-soft-X-ray tomography and cryo-XANES microscopy. The reported results suggest crystalline calcite as a precursor of hydroxyapatite depositions within the cells in the biomineralization process. In particular, both calcite and hydroxyapatite were detected within the cell during the early phase of osteogenic differentiation. This striking finding may redefine most of the biomineralization models published so far, taking into account that they have been formulated using murine samples while studies in human cell lines are still scarce.


Assuntos
Biomineralização/efeitos dos fármacos , Carbonato de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Durapatita/farmacologia , Células-Tronco Mesenquimais/citologia , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Distribuição Normal
6.
Exp Cell Res ; 320(2): 269-80, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24240125

RESUMO

The muscle-specific variant of neuronal nitric oxide (NO) synthase (NOS-I), is developmentally regulated in mouse suggesting a role of NO during myogenesis. In chick embryo, a good model of development, we found that the expression of NOS-I is up-regulated, but only in the early phase of development. Through a pharmacological intervention in ovo we found that NO signalling plays a relevant role during embryonic development. The inhibition of NOS-I decreased the growth of embryo, in particular of muscle tissue, while the restoring of physiological NO levels, via administration of a NO donor, reversed this effect. We found a selective action of NO, produced by NOS-I, on regulatory factors involved in myogenic differentiation in the early phase of chick embryo development: inhibition of NO generation leads to a decreased expression of the Myocyte enhancer factor 2a (Mef2a), Mef2c, Myogenin and Myosin, which was reversed by the administration of a NO donor. NO had no effects on Myf5 and MyoD, the myogenic regulatory factors necessary for myogenic determination. The action of NO on the myogenic regulatory factors was mediated via generation of cyclic GMP (cGMP) and activation of the cGMP-dependent protein kinase G (PKG). Finally we found in myoblasts in vitro that the activation of Mef2c was the key event mediating the NO-induced modulation of myogenesis. Our results identify NO produced by NOS-I as a key messenger in the early phase of embryonic development of chicken, acting as a critical determinant of myogenesis through its physiological cGMP/PKG pathway.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Fatores de Regulação Miogênica/genética , Óxido Nítrico/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Embrião de Galinha , Galinhas/genética , Galinhas/metabolismo , Humanos , Camundongos , Fatores de Regulação Miogênica/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Mediators Inflamm ; 2015: 370482, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101462

RESUMO

The inflammatory microenvironment induces tumours to acquire an aggressive and immunosuppressive behaviour. Since acid sphingomyelinase (A-SMase) downregulation in melanoma was shown to determine a malignant phenotype, we aimed here to elucidate the role of A-SMase in the regulation of tumour immunogenic microenvironment using in vivo melanoma models in which A-SMase was either downregulated or maintained at constitutively high levels. We found high levels of inflammatory factors in low A-SMase expressing tumours, which also displayed an immunosuppressive/protumoural microenvironment: high levels of myeloid-derived suppressor cells (MDSCs) and regulatory T lymphocytes (Tregs), as well as low levels of dendritic cells (DCs). In contrast, the restoration of A-SMase in melanoma cells not only reduced tumour growth and immunosuppression, but also induced a high recruitment at tumour site of effector immune cells with an antitumoural function. Indeed, we observed a poor homing of MDSCs and Tregs and the increased recruitment of CD8(+) and CD4(+) T lymphocytes as well as the infiltration of DCs and CD8(+)/CD44(high) T lymphocytes. This study demonstrates that change of A-SMase expression in cancer cells is sufficient per se to tune in vivo melanoma growth and that A-SMase levels modulate immune cells at tumour site. This may be taken into consideration in the setting of therapeutic strategies.


Assuntos
Reprogramação Celular , Melanoma Experimental/imunologia , Esfingomielina Fosfodiesterase/fisiologia , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Feminino , Tolerância Imunológica , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Am J Pathol ; 183(2): 413-21, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23731727

RESUMO

Despite the evidence that tumor necrosis factor (TNF) inhibitors block TNF and the downstream inflammatory cascade, their primary mechanism of action in inhibiting the self-sustaining pathogenic cycle in psoriasis is not completely understood. This study has the aim to identify early critical events for the resolution of inflammation in skin lesions using anti-TNF therapy. We used a translational approach that correlates gene expression fold change in lesional skin with the Psoriasis Area and Severity Index score decrease induced by TNF blockade after 4 weeks of treatment. Data were validated by immunofluorescence microscopy on skin biopsy specimens. We found that the anti-TNF-modulated genes that mostly associated with the clinical amelioration were Ccr7, its ligand, Ccl19, and dendritic cell maturation genes. Decreased expression of T-cell activation genes and Vegf also associated with the clinical response. More important, the down-regulation of Ccr7 observed at 4 weeks significantly correlated with the clinical remission occurring at later time points. Immunofluorescence microscopy on skin biopsy specimens showed that reduction of CCR7(+) cells and chemokine ligand (CCL) 19 was paralleled by disaggregation of the dermal lymphoid-like tissue. These data show that an early critical event for the clinical remission of psoriasis in response to TNF inhibitors is the inhibition of the CCR7/CCL19 axis and support its role in psoriasis pathogenesis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Quimiocina CCL19/antagonistas & inibidores , Psoríase/tratamento farmacológico , Receptores CCR7/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD4/metabolismo , Senescência Celular/efeitos dos fármacos , Quimiocina CCL19/genética , Etanercepte , Feminino , Humanos , Imunoglobulina G/uso terapêutico , Infliximab , Células de Langerhans/efeitos dos fármacos , Ativação Linfocitária/genética , Masculino , Pessoa de Meia-Idade , Psoríase/genética , Receptores CCR7/genética , Receptores do Fator de Necrose Tumoral/uso terapêutico , Indução de Remissão , Pele/metabolismo , Linfócitos T/efeitos dos fármacos
9.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607013

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic progressive muscle-wasting disorder that leads to rapid loss of mobility and premature death. The absence of functional dystrophin in DMD patients reduces sarcolemma stiffness and increases contraction damage, triggering a cascade of events leading to muscle cell degeneration, chronic inflammation, and deposition of fibrotic and adipose tissue. Efforts in the last decade have led to the clinical approval of novel drugs for DMD that aim to restore dystrophin function. However, combination therapies able to restore dystrophin expression and target the myriad of cellular events found impaired in dystrophic muscle are desirable. Muscles are higher energy consumers susceptible to mitochondrial defects. Mitochondria generate a significant source of reactive oxygen species (ROS), and they are, in turn, sensitive to proper redox balance. In both DMD patients and animal models there is compelling evidence that mitochondrial impairments have a key role in the failure of energy homeostasis. Here, we highlighted the main aspects of mitochondrial dysfunction and oxidative stress in DMD and discussed the recent findings linked to mitochondria/ROS-targeted molecules as a therapeutic approach. In this respect, dual targeting of both mitochondria and redox homeostasis emerges as a potential clinical option in DMD.


Assuntos
Distrofia Muscular de Duchenne , Animais , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Espécies Reativas de Oxigênio/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo
10.
Pharmaceutics ; 15(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36986618

RESUMO

This paper focuses on recent advancements in the development of 4D printed drug delivery systems (DDSs) for the intravesical administration of drugs. By coupling the effectiveness of local treatments with major compliance and long-lasting performance, they would represent a promising innovation for the current treatment of bladder pathologies. Being based on a shape-memory pharmaceutical-grade polyvinyl alcohol (PVA), these DDSs are manufactured in a bulky shape, can be programmed to take on a collapsed one suitable for insertion into a catheter and re-expand inside the target organ, following exposure to biological fluids at body temperature, while releasing their content. The biocompatibility of prototypes made of PVAs of different molecular weight, either uncoated or coated with Eudragit®-based formulations, was assessed by excluding relevant in vitro toxicity and inflammatory response using bladder cancer and human monocytic cell lines. Moreover, the feasibility of a novel configuration was preliminarily investigated, targeting the development of prototypes provided with inner reservoirs to be filled with different drug-containing formulations. Samples entailing two cavities, filled during the printing process, were successfully fabricated and showed, in simulated urine at body temperature, potential for controlled release, while maintaining the ability to recover about 70% of their original shape within 3 min.

11.
Front Cell Neurosci ; 17: 1285836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116398

RESUMO

Introduction: COVID-19 typically causes Q7 respiratory disorders, but a high proportion of patients also reports neurological and neuromuscular symptoms during and after SARSCoV-2 infection. Despite a number of studies documenting SARS-CoV-2 infection of various neuronal cell populations, the impact of SARS-CoV-2 exposure on motor neuronal cells specifically has not been investigated so far. Methods: Thus, by using human iPSC-derived motor neurons (iPSC-MNs) we assessed: (i) the expression of SARS-CoV-2 main receptors; (ii) iPSC-MN infectability by SARS-CoV-2; and (iii) the effect of SARS-CoV-2 exposure on iPSC-MN transcriptome. Results: Gene expression profiling and immunofluorescence (IF) analysis of the main host cell receptors recognized by SARS-CoV-2 revealed that all of them are expressed in iPSC-MNs, with CD147 and NRP1 being the most represented ones. By analyzing SARS-CoV-2 N1 and N2 gene expression over time, we observed that human iPSC-MNs were productively infected by SARS-CoV-2 in the absence of cytopathic effect. Supernatants collected from SARS-CoV-2-infected iPSC-MNs were able to re-infect VeroE6 cells. Image analyses of SARS-CoV-2 nucleocapsid proteins by IF confirmed iPSC-MN infectability. Furthermore, SARS-CoV-2 infection in iPSCMNs significantly altered the expression of genes (IL-6, ANG, S1PR1, BCL2, BAX, Casp8, HLA-A, ERAP1, CD147, MX1) associated with cell survival and metabolism, as well as antiviral and inflammatory response. Discussion: These results suggest for the very first time that SARS-CoV-2 can productively infect human iPSC-derived MNs probably by binding CD147 and NRP1 receptors. Such information will be important to unveil the biological bases of neuromuscular disorders characterizing SARS-CoV-2 infection and the so called long-COVID symptoms.

12.
Cells ; 11(8)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455997

RESUMO

E-cadherin, an epithelial-to-mesenchymal transition (EMT) marker, is coupled to actin cytoskeleton and distributes cell forces acting on cells. Since YAP transduces mechanical signals involving actin cytoskeleton, we aimed to investigate the relationship between YAP and mechanical cues in pancreatic ductal adenocarcinoma (PDAC) cell lines, characterized by different EMT-related phenotypes, cultured in 2D monolayers and 3D spheroids. We observed that the YAP/p-YAP ratio was reduced in HPAC and MIA PaCa-2 cell lines and remained unchanged in BxPC-3 cells when cultured in a 3D setting. CTGF and CYR61 gene expression were down-regulated in all PDAC 3D compared to 2D cultures, without any significant effect following actin cytoskeleton inhibition by Cytochalasin B (CyB) treatment. Moreover, LATS1 mRNA, indicating the activation of the Hippo pathway, was not influenced by CyB and differed in all PDAC cell lines having different EMT-related phenotype but a similar pattern of CTGF and CYR61 expression. Although the role of YAP modulation in response to mechanical cues in cancer cells remains to be completely elucidated, our results suggest that cell arrangement and phenotype can determine variable outcomes to mechanical stimuli in PDAC cells. Moreover, it is possible to speculate that YAP and Hippo pathways may act as parallel and not exclusive inputs that, converging at some points, may impact cell behavior.


Assuntos
Caderinas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Antígenos CD , Caderinas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
13.
Sci Rep ; 12(1): 10996, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768443

RESUMO

The level of secretory acid sphingomyelinase (S-ASM), a key enzyme in the sphingolipid metabolism, is elevated in a variety of human diseases, including in the serum of obese adults. Alterations in S-ASM were also found to induce morphological changes in erythrocytes. Consequently, the inhibition of S-ASM by functional Inhibitors of ASM (FIASMA) may have broad clinical implications. The purpose of this study was to assess S-ASM activity in pediatric patients with obesity and healthy matched controls, as well as to investigate the erythrocyte morphology using transmission electron microscopy. We recruited 46 obese patients (mean age 11 ± 2.9 years) and 44 controls (mean age 10.8 ± 2.9 years). S-ASM activity was significantly higher (Wilcoxon signed-rank test p-value: 0.004) in obese patients (mean 396.4 ± 49.7 pmol/ml/h) than in controls (mean 373.7 ± 23.1 pmol/ml/h). No evidence of morphological differences in erythrocytes was found between the two populations. We then carried out a case-control study based on the spontaneous reporting system database to compare FIASMAs with NON-FIASMAs in terms of weight gain risk. Children who received FIASMA had a significantly lower frequency of weight gain reports than patients who took NON-FIASMA agents (p < 0.001). Our findings suggest there is an intriguing possibility that S-ASM may play a role in pediatric obesity. This pilot study could serve as the basis for future studies in this interesting field of research.


Assuntos
Obesidade , Esfingomielina Fosfodiesterase , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Humanos , Obesidade/enzimologia , Projetos Piloto , Esfingomielina Fosfodiesterase/metabolismo , Aumento de Peso
14.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831250

RESUMO

Skeletal muscle regeneration is a complex process involving crosstalk between immune cells and myogenic precursor cells, i.e., satellite cells. In this scenario, macrophage recruitment in damaged muscles is a mandatory step for tissue repair since pro-inflammatory M1 macrophages promote the activation of satellite cells, stimulating their proliferation and then, after switching into anti-inflammatory M2 macrophages, they prompt satellite cells' differentiation into myotubes and resolve inflammation. Here, we show that acid sphingomyelinase (ASMase), a key enzyme in sphingolipid metabolism, is activated after skeletal muscle injury induced in vivo by the injection of cardiotoxin. ASMase ablation shortens the early phases of skeletal muscle regeneration without affecting satellite cell behavior. Of interest, ASMase regulates the balance between M1 and M2 macrophages in the injured muscles so that the absence of the enzyme reduces inflammation. The analysis of macrophage populations indicates that these events depend on the altered polarization of M1 macrophages towards an M2 phenotype. Our results unravel a novel role of ASMase in regulating immune response during muscle regeneration/repair and suggest ASMase as a supplemental therapeutic target in conditions of redundant inflammation that impairs muscle recovery.


Assuntos
Macrófagos/metabolismo , Macrófagos/patologia , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Animais , Diferenciação Celular , Polaridade Celular , Proliferação de Células , Ativação Enzimática , Inflamação/patologia , Camundongos Knockout , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Fenótipo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/deficiência
15.
Cleft Palate Craniofac J ; 47(4): 393-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20590460

RESUMO

OBJECTIVE: We aimed to characterize the fibroblast phenotype of patients by analyzing gene and protein expression of cleft lip and/or cleft palate fibroblasts in relation to collagen turnover and extracellular matrix remodeling. PATIENTS: Human palatal fibroblasts were obtained from three healthy subjects without cleft lip and/or cleft palate and from three subjects with nonsyndromic cleft lip and/or cleft palate. Collagen turnover-related gene and protein expression were analyzed by real-time polymerase chain reaction, Western and dot blots, and sodium dodecyl sulfate zymography. RESULTS: Cleft lip and/or cleft palate fibroblasts, compared with controls, displayed a down-regulation of collagens type I and III messenger RNA (p < .0001 and p < .001, respectively) but an opposite tendency to increase protein levels. Cleft lip and/or cleft palate cells had higher lysyl hydroxylase-2b messenger RNA levels expressed in relation to collagen type I messenger RNA, down-regulated matrix metalloproteinase-1, tissue inhibitor of matrix metalloproteinase-1, and Secreted Protein Acidic and Rich in Cysteine messenger RNA (p < .0001 and p < .01, respectively). Pro-matrix metalloproteinase-1 tended to decrease, and pro-matrix metalloproteinase-2 and -9 were down-regulated (p < .01, p < .05, respectively), as was Secreted Protein Acidic and Rich in Cysteine protein expression (p < .05). CONCLUSIONS: Our results suggest that the cleft lip and/or cleft palate fibroblast phenotype is characterized by a tendency toward interstitial collagen deposition due to posttranslational modifications, such as decreased collagen degradation by matrix metalloproteinases and increased collagen cross-links. These findings may contribute to the knowledge of the cleft lip and/or cleft palate fibroblast phenotype and may be useful to the surgeon when considering the potential wound contraction and subsequent undesired scarring in cleft lip and/or cleft palate ocurring after the surgical closure of a cleft palate.


Assuntos
Fenda Labial/metabolismo , Fissura Palatina/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Western Blotting , Criança , Pré-Escolar , Fenda Labial/cirurgia , Fissura Palatina/cirurgia , Colágeno/genética , Matriz Extracelular/metabolismo , Expressão Gênica , Humanos , Immunoblotting , Metaloproteinases da Matriz/metabolismo , Osteonectina/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Tecidual de Metaloproteinase-1/metabolismo
16.
J Exp Clin Cancer Res ; 39(1): 236, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168050

RESUMO

Immune checkpoint inhibitors (ICIs) have made a breakthrough in the treatment of different types of tumors, leading to improvement in survival, even in patients with advanced cancers. Despite the good clinical results, a certain percentage of patients do not respond to this kind of immunotherapy. In addition, in a fraction of nonresponder patients, which can vary from 4 to 29% according to different studies, a paradoxical boost in tumor growth after ICI administration was observed: a completely unpredictable novel pattern of cancer progression defined as hyperprogressive disease. Since this clinical phenomenon has only been recently described, a universally accepted clinical definition is lacking, and major efforts have been made to uncover the biological bases underlying hyperprogressive disease. The lines of research pursued so far have focused their attention on the study of the immune tumor microenvironment or on the analysis of intrinsic genomic characteristics of cancer cells producing data that allowed us to formulate several hypotheses to explain this detrimental effect related to ICI therapy. The aim of this review is to summarize the most important works that, to date, provide important insights that are useful in understanding the mechanistic causes of hyperprogressive disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/patologia
17.
Cells ; 9(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244541

RESUMO

Melanoma is the most severe type of skin cancer. Its unique and heterogeneous metabolism, relying on both glycolysis and oxidative phosphorylation, allows it to adapt to disparate conditions. Mitochondrial function is strictly interconnected with mitochondrial dynamics and both are fundamental in tumour progression and metastasis. The malignant phenotype of melanoma is also regulated by the expression levels of the enzyme acid sphingomyelinase (A-SMase). By modulating at transcriptional level A-SMase in the melanoma cell line B16-F1 cells, we assessed the effect of enzyme downregulation on mitochondrial dynamics and function. Our results demonstrate that A-SMase influences mitochondrial morphology by affecting the expression of mitofusin 1 and OPA1. The enhanced expression of the two mitochondrial fusion proteins, observed when A-SMase is expressed at low levels, correlates with the increase of mitochondrial function via the stimulation of the genes PGC-1alpha and TFAM, two genes that preside over mitochondrial biogenesis. Thus, the reduction of A-SMase expression, observed in malignant melanomas, may determine their metastatic behaviour through the stimulation of mitochondrial fusion, activity and biogenesis, conferring a metabolic advantage to melanoma cells.


Assuntos
Regulação para Baixo , Melanoma Experimental/enzimologia , Melanoma Experimental/metabolismo , Dinâmica Mitocondrial , Esfingomielina Fosfodiesterase/metabolismo , Animais , Modelos Animais de Doenças , Feminino , GTP Fosfo-Hidrolases/metabolismo , Melanoma Experimental/ultraestrutura , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Biogênese de Organelas , Oxirredução
18.
Cell Death Differ ; 27(8): 2383-2401, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32042098

RESUMO

Mitochondria change distribution across cells following a variety of pathophysiological stimuli. The mechanisms presiding over this redistribution are yet undefined. In a murine model overexpressing Drp1 specifically in skeletal muscle, we find marked mitochondria repositioning in muscle fibres and we demonstrate that Drp1 is involved in this process. Drp1 binds KLC1 and enhances microtubule-dependent transport of mitochondria. Drp1-KLC1 coupling triggers the displacement of KIF5B from kinesin-1 complex increasing its binding to microtubule tracks and mitochondrial transport. High levels of Drp1 exacerbate this mechanism leading to the repositioning of mitochondria closer to nuclei. The reduction of Drp1 levels decreases kinesin-1 activation and induces the partial recovery of mitochondrial distribution. Drp1 overexpression is also associated with higher cyclin-dependent kinase-1 (Cdk-1) activation that promotes the persistent phosphorylation of desmin at Ser-31 and its disassembling. Fission inhibition has a positive effect on desmin Ser-31 phosphorylation, regardless of Cdk-1 activation, suggesting that induction of both fission and Cdk-1 are required for desmin collapse. This altered desmin architecture impairs mechanotransduction and compromises mitochondrial network stability priming mitochondria transport through microtubule-dependent trafficking with a mechanism that involves the Drp1-dependent regulation of kinesin-1 complex.


Assuntos
Desmina/metabolismo , Dinaminas/metabolismo , Cinesinas/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Ativação Enzimática , Humanos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Transporte Proteico , Quinazolinonas/metabolismo , Succinato Desidrogenase/metabolismo
19.
Case Rep Dent ; 2019: 3231759, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263605

RESUMO

Gingival and osseous augmentations are reported as hypertrophic or hyperplastic reactions to different factors including chronic traumatisms and surgeries such as free gingival graft (FGG) that induce an abnormal growth of both hard and soft tissues in genetically predisposed subjects. Since an imbalance in collagen turnover plays a key role in the development of gingival overgrowth leading to an accumulation of collagen in gingival connective tissue, in this study we described the histological and molecular features of three oral overgrowths obtained from a 34-year-old woman previously operated for FGG in order to evaluate a possible relationship between exostoses and overgrown tissue. Healthy and overgrown gingiva were analyzed by histological methods, and the expression of genes and proteins involved in collagen synthesis, maturation, and degradation was assessed in cultured fibroblasts obtained from gingival fragments at the molecular level. Our results show that general morphology and collagen content were similar in healthy and overgrown gingivae. However, fibroblasts obtained from the overgrown gingiva revealed an anabolic phenotype characterized by an increased collagen turnover and maturation. These findings indicate that an exostosis could act as a mechanical stimulus stretching the overlying connective tissue and triggering an anabolic phenotype of gingival fibroblasts and suggest to use minimally invasive surgical techniques to avoid traumatizing the periosteal tissues for the eradication of the exostosis with minimal relapses.

20.
Cancers (Basel) ; 11(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461915

RESUMO

Drug resistance remains a major obstacle in cancer treatment. Because mitochondria mediate metabolic reprogramming in cancer drug resistance, we focused on these organelles in doxorubicin sensitive and resistant colon carcinoma cells. We employed soft X-ray cryo nano-tomography to map three-dimensionally these cells at nanometer-resolution and investigate the correlation between mitochondrial morphology and drug resistance phenotype. We have identified significant structural differences in the morphology of mitochondria in the two strains of cancer cells, as well as lower amounts of Reactive oxygen species (ROS) in resistant than in sensitive cells. We speculate that these features could elicit an impaired mitochondrial communication in resistant cells, thus preventing the formation of the interconnected mitochondrial network as clearly detected in the sensitive cells. In fact, the qualitative and quantitative three-dimensional assessment of the mitochondrial morphology highlights a different structural organization in resistant cells, which reflects a metabolic cellular adaptation functional to survive to the offense exerted by the antineoplastic treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA