Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 75(7): 1834-1851, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38066674

RESUMO

Aureochromes (AUREOs) are unique blue light receptors and transcription factors found only in stramenopile algae. While each of the four AUREOs identified in the diatom Phaeodactylum tricornutum may have a specific function, PtAUREO1a has been shown to have a strong impact on overall gene regulation, when light changes from red to blue light conditions. Despite its significance, the molecular mechanism of PtAUREO1a is largely unexplored. To comprehend the overall process of gene regulation by PtAUREO1a, we conducted a series of in vitro and in vivo experiments, including pull-down assays, yeast one-hybrid experiments, and phenotypical characterization using recombinant PtAUREOs and diatom mutant lines expressing a modified PtAureo1a gene. We describe the distinct light absorption properties of four PtAUREOs and the formation of all combinations of their potential dimers. We demonstrate the capability of PtAUREO1a and 1b to activate the genes, diatom-specific cyclin 2, PtAureo1a, and PtAureo1c under both light and dark conditions. Using mutant lines expressing a modified PtAUREO1a protein with a considerably reduced light absorption, we found novel evidence that PtAUREO1a regulates the expression of PtLHCF15, which is essential for red light acclimation. Based on current knowledge, we present a working model of PtAUREO1a gene regulation properties.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Luz , Regiões Promotoras Genéticas , Aclimatação/fisiologia
2.
New Phytol ; 239(3): 979-991, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37219878

RESUMO

Plants perceive the direction of gravity during skotomorphogenic growth, and of gravity and light during photomorphogenic growth. Gravity perception occurs through the sedimentation of starch granules in shoot endodermal and root columella cells. In this study, we demonstrate that the Arabidopsis thaliana GATA factors GNC (GATA, NITRATE-INDUCIBLE, CARBON METABOLISM-INVOLVED) and GNL/CGA1 (GNC-LIKE/CYTOKININ-RESPONSIVE GATA1) repress starch granule growth and amyloplast differentiation in endodermal cells. In our comprehensive study, we analysed gravitropic responses in the shoot, root and hypocotyl. We performed an RNA-seq analysis, used advanced microscopy techniques to examine starch granule size, number and morphology and quantified transitory starch degradation patterns. Using transmission electron microscopy, we examined amyloplast development. Our results indicate that the altered gravitropic responses in hypocotyls, shoots and roots of gnc gnl mutants and GNL overexpressors are due to the differential accumulation of starch granules observed in the GATA genotypes. At the whole-plant level, GNC and GNL play a more complex role in starch synthesis, degradation and starch granule initiation. Our findings suggest that the light-regulated GNC and GNL help balance phototropic and gravitropic growth responses after the transition from skotomorphogenesis to photomorphogenesis by repressing the growth of starch granules.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Amido/metabolismo , Gravitropismo/genética , Mutação/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
3.
J Cell Sci ; 132(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416855

RESUMO

The ability to sense and adapt to the constantly changing environment is important for all organisms. Cell surface receptors and transporters are key for the fast response to extracellular stimuli and, thus, their abundance on the plasma membrane has to be strictly controlled. Heteromeric endosomal sorting complexes required for transport (ESCRTs) are responsible for mediating the post-translational degradation of endocytosed plasma membrane proteins in eukaryotes and are essential both in animals and plants. ESCRTs bind and sort ubiquitylated cargoes for vacuolar degradation. Although many components that comprise the multi-subunit ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III complexes are conserved in eukaryotes, plant and animal ESCRTs have diverged during the course of evolution. Homologues of ESCRT-0, which recognises ubiquitylated cargo, have emerged in metazoan and fungi but are not found in plants. Instead, the Arabidopsis genome encodes plant-specific ubiquitin adaptors and a greater number of target of Myb protein 1 (TOM1) homologues than in mammals. In this Review, we summarise and discuss recent findings on ubiquitin-binding proteins in Arabidopsis that could have equivalent functions to ESCRT-0. We further hypothesise that SH3 domain-containing proteins might serve as membrane curvature-sensing endophilin and amphiphysin homologues during plant endocytosis.


Assuntos
Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Plantas/metabolismo , Vesículas Transportadoras/fisiologia , Animais , Transporte Biológico Ativo , Humanos
4.
Nat Commun ; 15(1): 5188, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898014

RESUMO

Autophagy is relevant for diverse processes in eukaryotic cells, making its regulation of fundamental importance. The formation and maturation of autophagosomes require a complex choreography of numerous factors. The endosomal sorting complex required for transport (ESCRT) is implicated in the final step of autophagosomal maturation by sealing of the phagophore membrane. ESCRT-III components were shown to mediate membrane scission by forming filaments that interact with cellular membranes. However, the molecular mechanisms underlying the recruitment of ESCRTs to non-endosomal membranes remain largely unknown. Here we focus on the ESCRT-associated protein ALG2-interacting protein X (ALIX) and identify Ca2+-dependent lipid binding protein 1 (CaLB1) as its interactor. Our findings demonstrate that CaLB1 interacts with AUTOPHAGY8 (ATG8) and PI(3)P, a phospholipid found in autophagosomal membranes. Moreover, CaLB1 and ALIX localize with ATG8 on autophagosomes upon salt treatment and assemble together into condensates. The depletion of CaLB1 impacts the maturation of salt-induced autophagosomes and leads to reduced delivery of autophagosomes to the vacuole. Here, we propose a crucial role of CaLB1 in augmenting phase separation of ALIX, facilitating the recruitment of ESCRT-III to the site of phagophore closure thereby ensuring efficient maturation of autophagosomes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autofagossomos , Autofagia , Proteínas de Ligação ao Cálcio , Complexos Endossomais de Distribuição Requeridos para Transporte , Arabidopsis/metabolismo , Arabidopsis/genética , Autofagossomos/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Fosfatos de Fosfatidilinositol/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Vacúolos/metabolismo , Separação de Fases
5.
Front Plant Sci ; 9: 1972, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687367

RESUMO

Clathrin coated vesicles (CCVs) mediate endocytosis of plasma membrane proteins and deliver their content to the endosomes for either subsequent recycling to the plasma membrane or transport to the vacuole for degradation. CCVs assemble also at the trans-Golgi network (TGN) and is responsible for the transport of proteins to other membranes. Oligomerization of clathrin and recruitment of adaptor protein complexes promote the budding and the release of CCVs. However, many of the details during plant CCV formation are not completely elucidated. The analysis of isolated CCVs is therefore important to better understand the formation of plant CCVs, their cargos and the regulation of clathrin-mediated transport processes. In this article, we describe an optimized method to isolate CCVs from Arabidopsis thaliana seedlings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA